Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Intercropping maize with tomato plants improved the yield and fruit quality of tomato plants grown under salinity stress

DOI
https://doi.org/10.14719/pst.4391
Submitted
19 July 2024
Published
23-07-2025
Versions

Abstract

Climate change represents a significant challenge for agriculture and food security. This phenomenon contributes substantially to food insecurity by increasing the frequency and severity of abiotic stresses such as salinity. Salt stress can unfavorably influence plant development and efficiency of numerous crops, particularly in arid and semi-arid zones. Different strategies and procedures can be utilized to moderate the negative impact of intemperate salt concentration within the soil. Here, the saltiness resistance of 2 Solanum lycopersicum L. varieties (Karima and Jade) grown in an intercropping system with maize was assessed by measuring fruit production and quality. Our results show that chlorophyll a was higher in the intercropping tomato than in the monoculture plants in both control (T0 = 0 mM NaCl) and NaCl-treated varieties (T1 = 125 mM NaCl). Moreover, in intercropping systems, the variety of Karima was less affected by NaCl treatment. However, for Jade variety, its intercropping with maize increased its production under both normal and salinity stress conditions. Regarding fruit quality, pH value of Karima was higher in intercropped plants under NaCl treatment, while the Brix value was less affected by NaCl and intercropping conditions. Finally, intercropping practices significantly influenced Na+ and K+ accumulation and Karima variety showed the capacity to accumulate more K+ and less Na+.

References

  1. 1. Dasgupta S, Hossain MdM, Huq M, Wheeler D. Climate change and soil salinity: The case of coastal Bangladesh. Ambio. 2015;44(8):815–26. https://doi.org/10.1007/s13280-015-0681-5
  2. 2. Bijalwan P, Shukla YR, Sharma U. Bell pepper ( Capsicum annuum L.) grown on raised bed, plastic mulch and sprayed with NAA@ 15 ppm: Effects on crop growth, yield, soil moisture and temperature. IJCS. 2021;9(1):3340 3340–6. https://doi.org/10.22271/ chemi.2021.v9.i1au.11752
  3. 3. Baghour M, Akodad M, Dariouche A, Maach M, Haddaji HE, Moumen A, et al. Gibberellic acid and indole acetic acid improves salt tolerance in transgenic tomato plants overexpressing LeNHX4 antiporter. Gesunde Pflanz. 2023;75(3):687–93. https://doi.org/10.1007/s10343-022-00734-y
  4. 4. Khan A, Khan AA, Samreen S, Irfan M. Assessment of sodium chloride (NaCl) induced salinity on the growth and yield parameters of Cichorium intybus L. Nat Env Poll Tech. 2023;22(2):845–52. https://doi.org/10.46488/NEPT.2023.v22i02.026
  5. 5. Hasan S, Irfan M, Khan A. Role of zinc oxide nanoparticles in alleviating sodium chloride- induced salt stress in sweet basil (Ocimum basilicum L.). J Appli Biol and Biotech. 2024;12(6): https://doi.org/10.7324/JABB.2024.188250
  6. 6. Kaur N, Kaur G, Pati PK. Deciphering strategies for salt stress tolerance in rice in the context of climate change. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK, editors. Advances in Rice Research for Abiotic Stress Tolerance [Internet]. Woodhead Publishing; 2019. p. 113–132. Available from: https://doi.org/10.1016/B978-0-12-814332-2.00006-X
  7. 7. Sheha AM, El-Mehy AA, Mohamed AS, Saleh SA. Different wheat intercropping systems with tomato to alleviate chilling stress, increase yield and profitability. Annals of Agri Sci. 2022 Jun 1;67(1):136–45. https://doi.org/10.1016/j.aoas.2022.06.005
  8. 8. Raza MA, Zhiqi W, Yasin HS, Gul H, Qin R, Rehman SU, et al. Effect of crop combination on yield performance, nutrient uptake and land use advantage of cereal/legume intercropping systems. Field Crops Res. 2023;304:109144. https://doi.org/10.1016/j.fcr.2023.109144
  9. 9. Gidey T, Berhe DH, Birhane E, Gufi Y, Haileslassie B. Intercropping maize with faba bean improves yield, income and soil fertility in semiarid environment. Scientifica. 2024;2024(1):2552695. https://doi.org/10.1155/2024/2552695
  10. 10. Mucha AP, Almeida CMR, Bordalo AA, Vasconcelos MTSD. LMWOA (low molecular weight organic acid) exudation by salt marsh plants: Natural variation and response to Cu contamination. Estuarine, Coastal and Shelf Sci. 2010;88(1):63–70. https://doi.org/10.1016/j.ecss.2010.03.008
  11. 11. Liang J, Shi W. Cotton/halophytes intercropping decreases salt accumulation and improves soil physicochemical properties and crop productivity in saline-alkali soils under mulched drip irrigation: A three-year field experiment. Field Crops Res. 2021;262:108027. https://doi.org/10.1016/j.fcr.2020.108027
  12. 12. Gui D, Zhang Y, Lv J, Guo J, Sha Z. Effects of intercropping on soil greenhouse gas emissions - A global meta-analysis. Sci of The Total Environ. 2024;918:170632. https://doi.org/10.1016/j.scitotenv.2024.170632
  13. 13. Marousek J, Gavurova B, Marouskova A. Cost breakdown indicates that biochar production from microalgae in Central Europe requires innovative cultivation procedures. Energy Nexus. 2024;16:100335. https://doi.org/10.1016/j.nexus.2024.100335
  14. 14. Marousek J, Kolar L, Vochozka M, Stehel V, Marouskova A. Novel method for cultivating beetroot reduces nitrate content. J Cleaner Prod. 2017;168:60–62. https://doi.org/10.1016/j.jclepro.2017.08.233
  15. 15. Kurdali F, Janat M, Khalifa K. Growth, nitrogen fixation and uptake in Dhaincha/Sorghum intercropping system under saline and non-saline conditions. Commun Soil Sci Plant Anal [Internet]. 2003 Nov 1 [cited 2025 Mar 2]; Available from: https://www.tandfonline.com/doi/abs/10.1081/CSS-120024780
  16. 16. Pavolova H, Tomas, Kysela K, Klimek M, Hajduova Z, Zawada M. The analysis of investment into industries based on portfolio managers. AMS. 2021;(26):161–70. https://doi.org/10.46544/AMS.v26i1.14
  17. 17. Atzori G, Nissim GW, Mancuso S, Palm E. Intercropping salt-sensitive Lactuca sativa L. and salt-tolerant Salsola soda L. in a saline hydroponic medium: An agronomic and physiological assessment. Plants. 2022;11(21):2924. https://doi.org/10.3390/plants11212924
  18. 18. Simpson CR, Franco JG, King SR, Volder A. Intercropping halophytes to mitigate salinity stress in watermelon. Sustain. 2018;10(3):681. https://doi.org/10.3390/su10030681
  19. 19. Inal A, Gunes A, Zhang F, Cakmak I. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiol and Biochem. 2007;45(5):350–56. https://doi.org/10.1016/j.plaphy.2007.03.016
  20. 20. Hussain S, Iqbal N, Rahman T, Liu T, Brestic M, Safdar ME, et al. Shade effect on carbohydrates dynamics and stem strength of soybean genotypes. Environ and Experi Bot. 2019;162:374–82. https://doi.org/10.1016/j.envexpbot.2019.03.011
  21. 21. Wang Y, Wang S, Zhao Z, Zhang K, Tian C, Mai W. Progress of Euhalophyte adaptation to arid areas to remediate salinized soil. Agri. 2023;13(3):704. https://doi.org/10.3390/agriculture13030704
  22. 22. Hussain S, Iqbal N, Brestic M, Raza MA, Pang T, Langham DR, et al. Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. Sci of The Total Environ. 2019;658:626–37. https://doi.org/10.1016/j.scitotenv.2018.12.182
  23. 23. Food and Agriculture Organization of the United Nations (FAO) [Internet]. 2022 [cited 2025 Mar 2]. Available from: https://www.fao.org/faostat/en/#data/FBS: %20FOOD %20BALANCES %20- %20FOOD %20AND %20AGRICULTURE %20ORGANIZATION %20OF %20THE %20UNITED %20NATIONS %20FAO/visualize
  24. 24. Gerszberg A, Hnatuszko-Konka K, Kowalczyk T, Kononowicz AK. Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tiss Organ Cult. 2015;120(3):881–902. https://doi.org/10.1007/s11240-014-0664-4
  25. 25. Lichtenthaler HK. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In: Methods in Enzymology [Internet]. Academic Press; 1987 [cited 2022 Apr 19]. p. 350–382. Available from: https://doi.org/10.1016/0076-6879(87)48036-1
  26. 26. Li T, Liu LN, Jiang CD, Liu YJ, Shi L. Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum. J Photochem and Photobiol B: Biol. 2014;137:31–38. https://doi.org/10.1016/j.jphotobiol.2014.04.022
  27. 27. Liu T, Cheng Z, Meng H, Ahmad I, Zhao H. Growth, yield and quality of spring tomato and physicochemical properties of medium in a tomato/garlic intercropping system under plastic tunnel organic medium cultivation. Scientia Horticulturae. 2014;170:159–68. https://doi.org/10.1016/j.scienta.2014.02.039
  28. 28. Esserti S, Billah REK, Venisse JS, Smaili A, Dich J, Es-sahm I, et al. Chitosan embedded with ZnO nanoparticles and hydroxyapatite: synthesis, antiphytopathogenic activity and effect on tomato grown under high density. Scientia Horticulturae. 2024;326:112778. https://doi.org/10.1016/j.scienta.2023.112778
  29. 29. Yao X, Li C, Li S, Zhu Q, Zhang H, Wang H, et al. Effect of shade on leaf photosynthetic capacity, light-intercepting, electron transfer and energy distribution of soybeans. Plant Growth Regul. 2017;83(3):409–16. https://doi.org/10.1007/s10725-017-0307-y
  30. 30. El-Gizawy AM, Gomaa HM, El-Habbasha KM, Mohamed SS. Effect of different shading levels on tomato plants 1. Growth, flowering and chemical composition. Acta Hortic. 1993;(323):341–48. https://doi.org/10.17660/ActaHortic.1993.323.31
  31. 31. Wu Y, Gong W, Yang F, Wang X, Yong T, Yang W. Responses to shade and subsequent recovery of soya bean in maize-soya bean relay strip intercropping. Plant Prod Sci. 2016;19(2):206–14. https://doi.org/10.1080/1343943X.2015.1128095
  32. 32. Iqbal N, Hussain S, Ahmed Z, Yang F, Wang X, Liu W, et al. Comparative analysis of maize–soybean strip intercropping systems: a review. Plant Prod Sci. 2019;22(2):131–42. https:// doi.org/10.1080/1343943X.2018.1541137
  33. 33. Abdel-Mawgoud AMR, El-Abd SO, Singer SM, Abou-Hadid AF, Hsiao TC. Effect of shade on the growth and yield of tomato plants. Acta Hortic. 1996;(434):313–20. https://doi.org/10.17660/ActaHortic.1996.434.38
  34. 34. Benitez MS, Ewing PM, Osborne SL, Lehman RM. Rhizosphere microbial communities explain positive effects of diverse crop rotations on maize and soybean performance. Soil Biol and Biochem. 2021;159:108309. https://doi.org/10.1016/j.soilbio.2021.108309
  35. 35. Ali B, Hafeez A, Afridi MS, Javed MA, Sumaira, Suleman F, et al. Bacterial-mediated salinity stress tolerance in maize (Zea mays L.): A fortunate way toward sustainable agriculture. ACS Omega. 2023 ;8(23):20471–87. https://doi.org/10.1021/acsomega.3c00723
  36. 36. Boorboori MR, Lackoova L. Arbuscular mycorrhizal fungi and salinity stress mitigation in plants. Front Plant Sci [Internet]. 2025 Jan 17 [cited 2025 Mar 2];15:Article 1311677. Available from: https://doi.org/10.3389/fpls.2024.1504970
  37. 37. Maach M, Baghour M, Akodad M, Galvez FJ, Sanchez ME, Aranda MN, et al. Overexpression of LeNHX4 improved yield, fruit quality and salt tolerance in tomato plants (Solanum lycopersicum L.). Mol Biol Rep. 2020;47(6):4145–53. https://doi.org/10.1007/s11033-020-05499-z
  38. 38. Maach M, Boudouasar K, Akodad M, Skalli A, Moumen A, Baghour M. Application of biostimulants improves yield and fruit quality in tomato. Intern J Vegetable Sci. 2021;27(3):288–93. https://doi.org/10.1080/19315260.2020.1780536
  39. 39. Denise DSM, Maristela W, Jose ES, Diego RDS, Ryan NS, Roberta MNP. Planting density and number of stems for ecological crop determinate growth tomato. Afr J Agric Res. 2018;13(12):544–50. https://doi.org/10.5897/AJAR2018.13039
  40. 40. Diaz-Perez JC. Bell pepper (Capsicum annum L.) crop as affected by shade level: microenvironment, plant growth, leaf gas exchange and leaf mineral nutrient concentration. HortSci. 2013;48(2):175–82. https://doi.org/10.21273/HORTSCI.48.2.175
  41. 41. Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Annals of Bot. 2003;91(5):503–27. https://doi.org/10.1093/aob/mcg058
  42. 42. Munns R, Tester M. Mechanisms of salinity tolerance. Annual Rev Plant Biol. 2008;59:651–81. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  43. 43. Garcia-Sanchez F, Syvertsen J, Martinez V, Melgar J. Salinity tolerance of ‘Valencia’ orange trees on rootstocks with contrasting salt tolerance is not improved by moderate shade. J Experi Bot. 2006;57(14):3697–706. https://doi.org/10.1093/jxb/erl121
  44. 44. Liu J, Hu T, Feng P, Yao D, Gao F, Hong X. Effect of potassium fertilization during fruit development on tomato quality, potassium uptake, water and potassium use efficiency under deficit irrigation regime. Agri Water Manag. 2021;250:106831. https://doi.org/10.1016/j.agwat.2021.106831
  45. 45. Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytologist. 2014;202(1):35–49. https://doi.org/10.1111/nph.12613
  46. 46. Pettigrew WT. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiologia Plantarum. 2008;133(4):670 670–81. https://doi.org/10.1111/j.1399 1399-3054.2008.01073.x
  47. 47. Fan Y, Wang Z, Liao D, Raza MA, Wang B, Zhang J, et al. Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in maize-soybean intercropping under different row configurations. Sci Rep. 2020;10(1):9504. https://doi.org/10.1038/s41598-020-66459-y
  48. 48. Massaretto IL, Albaladejo I, Purgatto E, Flores FB, Plasencia F, Egea-Fernandez JM, et al. Recovering tomato landraces to simultaneously improve fruit yield and nutritional quality against salt stress. Front Plant Sci [Internet]. 2018 Nov 30 [cited 2025 Mar 2];9:Article 1774. Available from:https://doi.org/10.3389/fpls.2018.01778
  49. 49. Leiva-Ampuero A, Agurto M, Matus JT, Hoppe G, Huidobro C, Inostroza-Blancheteau C, et al. Salinity impairs photosynthetic capacity and enhances carotenoid-related gene expression and biosynthesis in tomato (Solanum lycopersicum L. cv. Micro-Tom). Peer J. 2020;8:e9742. https://doi.org/10.7717/peerj.9742
  50. 50. Gerster H. The potential role of lycopene for human health. J American College of Nutri. 1997;16(2):109–26. https://doi.org/10.1080/07315724.1997.10718661
  51. 51. Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, Hallett PD, et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytologist. 2015;206(1):107–17. https://doi.org/10.1111/nph.13132
  52. 52. Marousek J, Strunecky O, Stehel V. Biochar farming: defining economically perspective applications. Clean Techn Environ Policy. 2019;21(7):1389–95. https://doi.org/10.1007/s10098-019-01728-7

Downloads

Download data is not yet available.