Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 2 (2025)

Anti-adipogenic effects of Parkia speciosa Hassk. pods extract containing gallic acid and p-coumaric acid on 3T3-L1 adipocytes

DOI
https://doi.org/10.14719/pst.4421
Submitted
22 July 2024
Published
07-04-2025 — Updated on 15-04-2025
Versions

Abstract

Adipogenesis is the process by which preadipocytes develop into mature adipocytes and an increase in adipose mass may lead to obesity. Obesity is categorized as a chronic, low-grade inflammatory condition that can give rise to reactive oxygen species (ROS) production. Antioxidants help mitigate ROS, protecting cells and tissues from oxidative damage. Therefore, this study evaluates the antioxidant activities and inhibitory effects of Parkia speciosa Hassk. pod extract (PSPE) on adipogenesis in 3T3-L1 adipocytes. High-performance liquid chromatography (HPLC) detected gallic acid and p-coumaric acid in PSPE, with concentrations of measured at 53.97 ± 0.76 microgram/mL and 1.74 ± 0.11 microgram/mL, respectively. The IC50 values for 2,2-diphenyl-1- picrylhydrazyl (DPPH) scavenging and ferric-reducing antioxidant power (FRAP) were determined to be 57.05 ± 0.22 microgram/mL and 325.3 ± 4.85 microgram FeSO4/mL extract, respectively. MTT assay results indicated that PSPE concentrations ranging from 31.25 to 250 microgram/mL maintained over 80% cell viability, while oil red O staining demonstrated reduced lipid accumulation at concentrations of 62.5 and 125 microgram/mL after 48 and 72 hours of treatment. These findings suggest that PSPE has potential as a natural antioxidant and anti-adipogenic agent, capable of inhibiting lipid accumulation and mitigating oxidative damage.

References

  1. Datta P, Sharma A, Pal B, Mohit K. The role of adipokines and adipogenesis in the pathogenesis of osteoarthritis. In: Foti M, Locati M, editors. Cytokine effector functions in tissues: Academic Press: Amsterdam; 2017:99–107. https://doi.org/10.1016/B978-0-12-804214-4.00004-X
  2. Naomi R, Teoh SH, Embong H, Balan SS, Othman F, Bahari H, et al. The role of oxidative stress and inflammation in obesity and its impact on cognitive impairments—A narrative review. Antioxidants. 2023;12(5):1071. https://doi.org/10.3390/antiox12051071
  3. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Phcog Rev. 2010;4(8):118–26. https://doi.org/10.4103/0973-7847.70902
  4. Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, et al. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int J Mol Sci. 2017;18(1):96. https://doi.org/10.3390/ijms18010096
  5. Babando AA, Ilemona AJ, Adesina AJ, Gangas P, Ibrahim H, Ojo OA. Antioxidants from Nigerian medicinal plants: What are the evidence? In: Mansour MA, editor. Lipid peroxidation research. IntechOpen: 2020. p. 43. https://doi.org/10.5772/intechopen.84454
  6. Moussa Z, Judeh ZM, Ahmed SA. Nonenzymatic exogenous and endogenous antioxidants. Free Radic Med Biol. 2019;1:11-22. https://doi.org/10.5772/intechopen.87778
  7. Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr J. 2015;15:1-22. https://doi.org/10.1186/s12937-016-0186-5
  8. Azizul NH, Leong YH, Ahmad NI, Rahman SA. Nutraceutical potential of Parkia speciosa (stink bean): A current review. Am J Biomed Sci Res. 2019;4:392-402. https://doi.org/10.34297/ajbsr.2019.04.000842
  9. Kamisah Y, Zuhair JSF, Juliana AH, Jaarin K. Parkia speciosa empty pod prevents hypertension and cardiac damage in rats given N(G)-nitro-L-arginine methyl ester. Biomed Pharmacother. 2017;96:291–98. https://doi.org/10.1016/j.biopha.2017.09.095
  10. Ghasemzadeh A, Jaafar HZE, Bukhori MFM, Rahmat MH, Rahmat A. Assessment and comparison of phytochemical constituents and biological activities of bitter bean (Parkia speciosa Hassk.) collected from different locations in Malaysia. Chem Cent J. 2018;12(1):12. https://doi.org/10.1186/s13065-018-0377-6
  11. Mustafa NH, Ugusman A, Jalil J, Kamisah Y. Anti-inflammatory property of Parkia speciosa empty pod extract in human umbilical vein endothelial cells. J Appl Pharm Sci. 2018;8(1):152–58. https://doi.org/10.7324/JAPS.2018.8123
  12. Sonia N, Dsouza MR, Alisha. Pharmacological evaluation of Parkia speciosa Hassk. for antioxidant, anti-inflammatory, anti-diabetic and anti-microbial activities in vitro. Int J Life Sci. 2018;A11:49-59.
  13. Gui JS, Jalil J, Jubri Z, Kamisah Y. Parkia speciosa empty pod extract exerts anti-inflammatory properties by modulating NFkB and MAPK pathways in cardiomyocytes exposed to tumor necrosis factor-alpha. Cytotechnology. 2019;71(1):79–89. https://doi.org/10.1007/s10616-018-0267-8
  14. Fitrya F, Amriani A, Puspa Novita R, Setiorini D. Immunomodulatory effect of Parkia speciosa Hassk. pods extract on rat induced by Salmonella typhimurium. J Pharm Pharmacogn Res. 2020;8(5):457–65.
  15. Singhania N, Chhikara N, Bishnoi S, Garg MK, Panghal A. Bioactive compounds of petai beans (Parkia speciosa Hassk.). In: Murthy HN, Paek KY, editors. Bioactive compounds in underutilized vegetables and legumes. Springer: Cham; 2021. p. 1–19. https://doi.org/10.1007/978-3-030-44578-2_30-1
  16. Fithri NA, Fitrya F, Shabrina T, Yulanri D. Antioxidant activity analysis and standardization of Parkia speciosa (Petai) pods ethanol extract. Sci Technol Indones. 2019;4(1):5-10. https://doi.org/11.26554/sti.2219.4.1.5-11
  17. Bobo-García G, Davidov-Pardo G, Arroqui C, Vírseda P, Marín-Arroyo MR, Navarro M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J Sci Food Agric. 2015;95(1):204–09. https://doi.org/10.1002/jsfa.6706
  18. Abd Manan E, Abd Gani SS, Zaidan UH, Halmi MI. Characterization of antioxidant activities in red dragon fruit (Hylocereus polyrhizus) pulp water-based extract. J Adv Res Fluid Mech Therm Sci. 2019;61(2):170-80.
  19. Kang JW, Nam D, Kim KH, Huh JE, Lee JD. Effect of gambisan on the inhibition of adipogenesis in 3T3-L1 adipocytes. J Evid Based Complementary Altern Med. 2013;1:789067. https://doi.org/10.1155/2013/789067
  20. Oruganti L, Reddy Sankaran K, Dinnupati HG, Kotakadi VS, Meriga B. Anti-adipogenic and lipid-lowering activity of piperine and epigallocatechin gallate in 3T3-L1 adipocytes. Arch Physiol Biochem. 2023;129(5):1152–59. https://doi.org/10.1080/13813455.2021.1908366
  21. Hwang JM, Lee MH, Lee JH, Lee JH. Agastache rugosa extract and its bioactive compound tilianin suppress adipogenesis and lipogenesis on 3t3-l1 cells. Appl Sci. (Switzerland). 2021;11(16):7679. https://doi.org/10.3390/app11167679
  22. Mohamad M, Ali MW, Ripin A, Ahmad A. Effect of extraction process parameters on the yield of bioactive compounds from the roots of Eurycoma longifolia. J Teknol (Sci Engin). 2013;60:51–57. https://doi.org/10.11113/jt.v60.1441
  23. Ko HJ, Ang LH, Ng LT. Antioxidant activities and polyphenolic constituents of bitter bean Parkia speciosa. Int J Food Prop. 2014;17(9):1977–86. https://doi.org/10.1080/10942912.2013.775152
  24. Siti HN, Jalil J, Asmadi AY, Kamisah Y. Parkia speciosa Hassk. Empty pod extract alleviates angiotensin II-induced cardiomyocyte hypertrophy in H9c2 cells by modulating the Ang II/ROS/NO Axis and MAPK pathway. Front Pharma. 2021;12:741623.
  25. Gan CY, Latiff AA. Antioxidant Parkia speciosa pod powder as potential functional flour in food application: Physicochemical properties’ characterization. Food Hydrocoll. 2011;25(5):1174–80. https://doi.org/10.1016/j.foodhyd.2010.11.004
  26. Pehlivan FE. Vitamin C: An antioxidant agent. In: Pehlivan FE, editor. Vitamin C. IntechOpen. 2017; p. 23-35. https://doi.org/10.5772/intechopen.69660
  27. Etesami B, Ghaseminezhad S, Nowrouzi A, Rashidipour M, Yazdanparast R. Investigation of 3T3-L1 cell differentiation to adipocyte, affected by aqueous seed extract of Phoenix dactylifera L. Rep Biochem Mol Biol. 2020;9(1):14.
  28. Li T, Zhang L, Jin C, Xiong Y, Cheng YY, Chen K. Pomegranate flower extract bidirectionally regulates the proliferation, differentiation and apoptosis of 3T3-L1 cells through regulation of PPAR gamma expression mediated by PI3K-AKT signaling pathway. Biomed Pharmacother. 2020;131:110769. https://doi.org/10.1016/j.biopha.2020.110769
  29. Oh MJ, Lee H Bin, Yoo G, Park M, Lee CH, Choi I, et al. Anti-obesity effects of red pepper (Capsicum annuum L.) leaf extract on 3T3-L1 preadipocytes and high fat diet-fed mice. Food Funct. 2022;14(1):292–304. https://doi.org/10.1039/d2fo03201e
  30. García-Carrasco B, Fernandez-Dacosta R, Dávalos A, Ordovás J, Rodriguez-Casado A. In vitro hypolipidemic and antioxidant effects of leaf and root extracts of Taraxacum officinale. J Med Sci. 2015;3(2):38–54. https://doi.org/10.3390/medsci3020038

Downloads

Download data is not yet available.