Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 1 (2025)

Silver nanoparticles: Toxicity and inhibitory effects against Aflatoxins

DOI
https://doi.org/10.14719/pst.4422
Submitted
22 July 2024
Published
17-02-2025 — Updated on 07-03-2025
Versions

Abstract

Among the numerous nanomaterials, metal nanoparticles, like silver nanoparticles (AgNPs), are the most employed. Significant focus has been given to their dual role due to their versatile properties. Beneficial, on the one side, as potent antimicrobial properties determine different applications in medicine, agriculture, and food safety, to potentially harmful on the other side. Mycotoxins, secondary metabolites produced by toxigenic strains of fungi, are highly toxic substances recognized for their influence on processes of mutagenesis and carcinogenesis, hepatotoxicity, immunosuppression and estrogenic properties in animals and humans, posing severe threats to health through contaminated food and feed. Thus, this paper explores the toxicity mechanisms of AgNPs and their inhibitory effects on aflatoxins, a class of mycotoxins produced mostly by Aspergillus species that pose significant health risks. The interaction between AgNPs and aflatoxins is examined, highlighting the potential of AgNPs in mitigating aflatoxin contamination. The article gives a summary of the synthesis, properties, and dual roles of AgNPs in the toxicity and inhibition of aflatoxins, concentrating on their possible uses and safety concerns at the end. It is found that elements affect AgNP’s toxicity, like particle solubility, surface area, surface charge, size, concentration, formulation, tendency to agglomerate, and exposure duration. Therefore, assessing the safe levels of AgNP exposure and developing guidelines for their use in different fields are crucial for minimizing the risks. It can be summarized that the biosynthesized AgNPs generated through green synthesis, owing to their biocompatibility and low toxicity, could be applied in harmless concentrations as strong antifungals and anti-mycotoxins. This can offer significant potential for enhancing food safety due to their strong antimicrobial properties, which can inhibit the growth of foodborne pathogens and extend shelf life. However, the potential for nanoparticle migration into food must be considered, which raises critical concerns about human health, regulatory challenges, and environmental impact.

References

  1. Ali Mansoori G. Principles of nanotechnology: molecular-based study of condensed matter in small systems. World Scientific Publishing Company; 2005. https://doi.org/10.1142/5749
  2. Geng H, Pedersen SV, Ma Y, Haghighi T, Dai H, Howes PD, et al. Noble metal nanoparticle biosensors: from fundamental studies toward point-of-care diagnostics. Acc Chem Res. 2022;55:593?604. https://doi.org/10.1021/acs.accounts.1c00598
  3. Khan T, Ullah N, Khan MA, Mashwani Z-u-R, Nadhman A. Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv Colloid Interface Sci. 2019;272:102017. https://doi.org/10.1016/j.cis.2019.102017
  4. Reidy B, Haase A, Luch A, Dawson KA, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6(6):2295?350. https://doi.org/10.3390/ma6062295
  5. Wahab S, Salman A, Khan Z, Khan S, Krishnaraj C, Yun S-I. Metallic nanoparticles: A promising arsenal against antimicrobial resistance - Unraveling mechanisms and enhancing medication efficacy. Int J Mol Sci. 2023;24(19):14897. https://doi.org/10.3390/ijms241914897
  6. Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, et al. Nanotechnology’s frontier in combating infectous and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther. 2024;9(1):34. https://doi.org/10.1038/s41392-024-01745-z
  7. Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications and toxicity effects. Int Nano Lett. 2012;2:32. https://doi.org/10.1186/2228-5326-2-32
  8. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–90. https://doi.org/10.1021/nn800596w
  9. Taheri S, Cavallaro A, Christo SN, Smith LE, Majewski P, Barton M, et al. Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials. 2014;35(16):4601?09. https://doi.org/10.1016/j.biomaterials.2014.02.033
  10. Naqvi SIZ, Kausar H, Afzal A, Hashim M, Mujahid H, Javed M, et al. Antifungal activity of Juglans-regia-mediated silver nanoparticles (AgNPs) against Aspergillus-ochraceus-induced toxicity in in vitro and in vivo settings. J Funct Biomater. 2023;14(4):221. https://doi.org/10.3390/jfb14040221
  11. Reddy KRN, Salleh B, Saad B, Abbas HK, Abel C, Shier WT. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev. 2010;29(1):3–26. https://doi.org/10.3109/15569541003598553
  12. Ellis WO, Smith JP, Simpson BK, Oldham JH. Aflatoxins in food: occurrence, biosynthesis, effects on organisms, detection and methods of control. Crit Rev Food Sci Nutr. 1991;30(4):403?39. https://doi.org/10.1080/10408399109527551
  13. Klvana M, Bren U. Aflatoxin B1-formamidopyrimidine DNA adducts: Relationships between structures, free energies and melting temperatures. Molecules. 2019;24(1):150. https://doi.org/10.3390/molecules24010150
  14. Benkerroum N. Aflatoxins: Producing-molds, structure, healthi and incidence in Southeast Asian and Sub-Saharan African countries. Int J Environ Res Public Health. 2020; 17(4):1215. https://doi.org/10.3390/ijerph17041215
  15. Chanda A, Roze LV, Linz JE. A possible role for exocytosis in aflatoxin export in Aspergillus parasiticus. Eukaryot Cell. 2010;9(11):1724?27. https://doi.org/10.1128/EC.00118-10
  16. Liu Y, Wu F. Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environ Health Perspect. 2010;118(6):818?24. https://doi.org/10.1289/ehp.0901388
  17. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–82. https://doi.org/10.1016/j.jcis.2004.02.012
  18. Horky P, Skalickova S, Baholet D, Skladanka J. Nanoparticles as a solution for eliminating the risk of mycotoxins. Nanomaterials. 2018; 8(9):727. doi:10.3390/nano8090727
  19. Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, et al. Twenty-eightday oral toxicity, genotoxicity and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2008;20(6):575?83. https://doi.org/10.1080/08958370701874663
  20. Jo Y-K, Kim BH, Jung G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 2009;93(10):1037?43. https://doi.org/10.1094/PDIS-93-10-1037
  21. Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B Biointerfaces. 2013;107:227?34. https://doi.org/10.1016/j.colsurfb.2013.02.004
  22. Jung JH, Cheol Oh H, Soo Noh H, Ji JH, Soo Kim S. Metal nanoparticle generation using a small ceramic heather with a local heating area. J Aerosol Sci. 2006;37(12):1662?70. https://doi.org/10.1016/j.jaerosci.2006.09.002
  23. Mamdouh S, Mahmoud A, Samir A, Mobarak M, Mohamed T. Using femtosecond laser pulses to investigate the nonlinear optical properties of silver nanoparticles colloids in distilled water synthesized by laser ablation. Phys B Condens Matter. 2022;631:413727. https://doi.org/10.1016/j.physb.2022.413727
  24. Jeevanandam J, Krishnan S, Hii YS, Pan S, Chan YS, Acquah C, et al. Synthesis approach dependent antiviral properties of silver nanoparticles and nanocomposites. J Nanostructure Chem. 2022;12(5):809?31. https://doi.org/10.1007/s40097-021-00465-y
  25. Vigneswari S, Amelia TSM, Hazwan MH, Mouriya GK, Bhubalan K, Amirul A-AA, et al. Transformation of biowaste for medical applications: Incorporation of biologically derived silver nanoparticles as antimicrobial coating. Antibiotics. 2021;10(3):229. https://doi.org/10.3390/antibiotics10030229
  26. Sun Y. Controlled synthesis of colloidal silver nanoparticles in organic solutions: Empirical rules for nucleation engineering. Chem Soc Rev. 2013;42:2497?511. https://doi.org/10.1039/C2CS35289C
  27. Alahmad A, Al-Zereini WA, Hijazin TJ, Al-Madanat OY, Alghoraibi I, Al-Qaralleh O, et al. Green synthesis of silver nanoparticles using Hypericum perforatum L. aqueous extract with the evaluation of its antibacterial activity against clinical and food pathogens. Pharmaceutics. 2022;14(5):1104. https://doi.org/10.3390/pharmaceutics14051104
  28. Smilkov K, Ackova DG, Cvetkovski A, Geskovski N, Boev B, Pejova B, et al. First characterization of functionalized nanoparticles - tandem of biosynthesized silver nanoparticles conjugated with piperine. Chem Pap. 2022;76:1019?30. https://doi.org/10.1007/s11696-021-01911-5.
  29. Baran MF, Keskin C, Baran A, Hatipo?lu A, Yildiztekin M, Küçükaydin S, et al. Green synthesis of silver nanoparticles from Allium cepa L. peel extract, their antioxidant, antipathogenic and anticholinesterase Activity. Molecules. 2023;28:2310. https://doi.org/10.3390/molecules28052310.
  30. Mie R, Samsudin MW, Din LB, Ahmad A, Ibrahim N, Adnan SNA. Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int J Nanomedicine. 2014;9:121?27. http://dx.doi.org/10.2147/IJN.S52306
  31. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green Synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9(5):2673?702. https://doi.org/10.1039/c8ra08982e
  32. Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, et al. Silver colloid nanoparticles: synthesis, characterization and their antibacterial activity. J Phys Chem B. 2006;110(33):16248?53. https://doi.org/10.1021/jp063826h
  33. Kathiravan V, Ravi S, Ashokkumar S, Velmurugan S, Elumalai K, Khatiwada CP. Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochim Acta A Mol Biomol Spectrosc. 2015;139:200?05. https://doi.org/10.1016/j.saa.2014.12.022
  34. Al-zubaidi LA, Wsain SM, Ibrahim SM. Evaluate the antifungal and detoxification activity of silver nanoparticles prepared with the Curcuma plant extract against Aflatoxin B1 in broiler feed. IOP Conf Ser: Earth Environ Sci; 2021.779:012076. https://doi.org/10.1088/1755-1315/779/1/012076
  35. Priyadarshini E, Priyadarshini SS, Cousins BG, Pradhan N. Metal-fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere. 2021;274:129976. https://doi.org/10.1016/j.chemosphere.2021.129976
  36. Babele PK, Thakre PK, Kumawat R, Tomar RS. Zinc oxide nanoparticles induce toxicity by affecting cell wall integrity pathway, mitochondrial function and lipid homeostasis in Saccharomyces cerevisiae. Chemosphere. 2018;213:65?75. https://doi.org/10.1016/j.chemosphere.2018.09.028
  37. Selvaraj M, Pandurangan P, Ramasami N, Rajendran SB, Sangilimuthu SN, Perumal P. Highly potential antifungal activity of quantum-sized silver nanoparticles against Candida albicans. Appl Biochem Biotechnol. 2014;173(1):55–66. https://doi.org/10.1007/s12010-014-0782-9
  38. Athie-García MS, Piñón-Castillo HA, Muñoz-Castellanos LN, Ulloa-Ogaz AL, Martínez-Varela PI, Quintero-Ramos A, et al. Cell wall damage and oxidative stress in Candida albicans ATCC10231 and Aspergillus niger caused by palladium nanoparticles. Toxicol In Vitro. 2018;48:111–20. https://doi.org/10.1016/j.tiv.2018.01.006
  39. Ouda SM. Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol. 2014;9:34?42. https://doi.org/10.3923/jm.2014.34.42
  40. Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms. Crit Rev Microbiol. 2009;35(4):340?55. https://doi.org/10.3109/10408410903241436
  41. Lee Y-H, Cheng F-Y, Chiu H-W, Tsai J-C, Fang C-Y, Chen C-W, et al. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials. 2014;35(16):4706?15. https://doi.org/10.1016/j.biomaterials.2014.02.021
  42. Mussin J, Giusiano G. Biogenic silver nanoparticles as antifungal agents. Front Chem. 2022; 10:1023542. https://doi.org/10.3389/fchem.2022.1023542
  43. Rizwana H, Alwhibi MS, Al-Judaie RA, Aldehaish HA, Alsaggabi NS. Sunlight-mediated green synthesis of silver nanoparticles using the berries of Ribes rubrum (Red Currants): characterisation and evaluation of their antifungal and antibacterial activities. Molecules. 2022; 27(7):2186. https://doi.org/10.3390/molecules27072186
  44. Cruz-Luna AR, Cruz-Martínez H, Vásquez-López A, Medina DI. Metal nanoparticles as novel antifungal agents for sustainable agriculture: current advances and future directions. J Fungi. 2021;7(12):1033. https://doi.org/10.3390/jof7121033
  45. Kim K-J, Sung WS, Moon S-K, Choi J-S, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol. 2008;18(8):1482?84. PMID: 18756112.
  46. Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology. 2012;40(1):53?58. https://doi.org/10.5941/MYCO.2012.40.1.053
  47. Kotzybik K, Gräf V, Kugler L, Stoll DA, Greiner R, Geisen R, et al. Influence of different nanomaterials on growth and mycotoxin production of Penicillium verrucosum. PLoS One. 2016;11(3):e0150855. https://doi.org/10.1371/journal.pone.0150855
  48. Mussin JE, Roldán MV, Rojas F, de Los Ángeles Sosa M, Pellegri N, Giusiano G. Antifungal activity of silver nanoparticles in combination with ketoconazole against Malassezia furfur. AMB Express. 2019;9(1):131. https://doi.org/10.1186/s13568-019-0857-7
  49. Pietrzak K, Twaruzek M, Czyzowska A, Kosicki R, Gutarowska B. Influence of silver nanoparticles on metabolism and toxicity of moulds. Acta Biochim Pol. 2015;62(4):851?57. https://doi.org/10.18388/abp.2015_1146
  50. Nguyen DH, Vo TNN, Nguyen NT, Ching YC, Thi TTH. Comparison of biogenic silver nanoparticles formed by Momordica charantia and Psidium guajava leaf extract and antifungal evaluation. PLoS One. 2020;15(9):e0239360. https://doi.org/10.1371/journal.pone.0239360
  51. Asghar MA, Zahir E, Shahid SM, Khan MN, Asghar MA, Iqbal J, et al. Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT. 2018;90:98?107. https://doi.org/10.1016/j.lwt.2017.12.009
  52. Mousavi SAA, Pourtalebi S. Inhibitory effects of silver nanoparticles on growth and aflatoxin B1 production by Aspergillus parasiticus. Iran J Med Sci. 2015;40(6):501?06. PMCID: PMC4628140
  53. Mallmann EJJ, Cunha FA, Castro BNMF, Maciel AM, Menezes EA, Fechine PBA. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop Sao Paulo. 2015;57(2):165?67. https://doi.org/10.1590/S0036-46652015000200011
  54. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharmaceutics. 2009;6(5):1388?401. https://doi.org/10.1021/mp900056g
  55. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006;5(4):916?24. https://doi.org/10.1021/pr0504079
  56. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effects of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662?68. https://doi.org/10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3
  57. Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. Mode of bacterial action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol. 2003;69(7):4278?81. https://doi.org/10.1128/AEM.69.7.4278-4281.2003
  58. Bocate KP, Reis GF, de Souza PC, Oliveira Junior AG, Durán N, Nakazato G, et al. Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. Int J Food Microbiol. 2019;291:79?86. https://doi.org/10.1016/j.ijfoodmicro.2018.11.012
  59. Deabes MM, Khalil WKB, Attallah AG, El-Desouky TA, Naguib KM. Impact of silver nanoparticles on gene expression in Aspergillus flavus producer aflatoxin B1. Open Access Maced J Med Sci. 2018;6(4):600?05. https://doi.org/10.3889/oamjms.2018.117
  60. Abd El-Ghany MN, Hamdi S, Korany SM, Elbaz RM, Emam AN, Farahat MG. Biogenic silver nanoparticles produced by soil rare actinomycetes and their significant effect on Aspergillus-derived mycotoxins. Microorganisms. 2023;11(4):1006. https://doi.org/10.3390/microorganisms11041006
  61. Xiang S, Ma X, Shi H, Ma T, Tian C, Chen Y, et al. Green synthesis of an alginate-coated silver nanoparticle shows high antifungal activity by enhancing its cell membrane penetrating ability. ACS Appl Bio Mater. 2019;2(9):4087?96. https://doi.org/10.1021/acsabm.9b00590
  62. Li J, Zhang B, Chang X, Gan J, Li W, Niu S, et al. Silver nanoparticles modulate mitochondrial dynamics and biogenesis in HepG2 cells. Environ Pollut. 2020;256:113430. https://doi.org/10.1016/j.envpol.2019.113430
  63. Chang X, Niu S, Shang M, Li J, Guo M, Zhang W, et al. ROS-Drp1-mediated mitochondria fission contributes to hippocampal HT22 cell apoptosis induced by silver nanoparticles. Redox Biol. 2023;63:102739. https://doi.org/10.1016/j.redox.2023.102739
  64. Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. Environ Sci Pollut Res. 2024;31:8400–28. https://doi.org/10.1007/s11356-023-31669-0
  65. Ahamed M, Alsalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411(23-24):1841?48. https://doi.org/10.1016/j.cca.2010.08.016
  66. W?ng Y, Han Y, Xu D-X. Developmental impacts and toxicological hallmarks of silver nanoparticles across diverse biological models. Environ Sci Ecotechnol. 2023;19:100325. https://doi.org/10.1016/j.ese.2023.100325
  67. Babaei V, Ashtarinezhad A, Torshabi M, Teimourian S, Shahmirzaie M, Abolghasemi J, et al. High inflammatory cytokines gene expression can be detected in workers with prolonged exposure to silver and silica nanoparticles in industries. Sci Rep. 2024;14(1):5667. https://doi.org/10.1038/s41598-024-56027-z
  68. Ong WTJ, Nyam KL. Evaluation of silver nanoparticles in cosmeceutical and potential biosafety complications. Saudi J Biol Sci. 2022;29(4):2085?94. https://doi.org/10.1016/j.sjbs.2022.01.035
  69. Vazquez-Muñoz R, Borrego B, Juárez-Moreno K, Garsía-Garsía M, Mota Morales JD, Bogdanchikova N, et al. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? Toxicol Lett. 2017;276:11?20. https://doi.org/10.1016/j.toxlet.2017.05.007
  70. Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, et al. Silver nanoparticles: therapeutical uses, toxicity and safety issues. J Pharm Sci. 2014;103(7):1931?44. https://doi.org/10.1002/jps.24001
  71. Ferdous Z, Nemmar A. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21(7):2375. https://doi.org/10.3390/ijms21072375
  72. Koivisto AJ, Burrueco-Subirà D, Candalija A, Vázquez-Campos S, Nicosia A, Ravegnani F, et al. Exposure assessment and risks associated with wearing silver nanoparticle-coated textiles [version 1; peer review: 2 approved with reservations]. Open Res Europe. 2024;4:100. https://doi.org/10.12688/openreseurope.17254.1.
  73. Stefaniak AB, Duling MG, Lawrence RB, Thomas TA, Lebouf RF, Wade EE, et al. Dermal exposure potential from textiles that contain silver nanoparticles. Int J Occup Environ Health. 2014;20(3):220?34. https://doi.org/10.1179/2049396714Y.0000000070
  74. Gautam R, Yang SJ, Maharjan A, Jo JH, Acharya M, Heo Y, et al. Prediction of skin sensitization potential of silver and zinc oxide nanoparticles through the human cell line activation test. Front Toxicol. 2021;3:649666. https://doi.org/10.3389/ftox.2021.649666
  75. Stoehr LC, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, et al. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol. 2011;8(1):36. https://doi.org/10.1186/1743-8977-8-36
  76. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag Release. Part Fibre Toxicol. 2014;11:11. https://doi.org/10.1186/1743-8977-11-11
  77. Suliman YAO, Ali D, Alarifi S, Harrath AH, Mansour L, Alwasel SH. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells. Environ Toxicol. 2015;30(2):149–60. https://doi.org/10.1002/tox.21880
  78. D?ugosz O, Sochocka M, Ochnik M, Banach M. Metal and bimetallic nanoparticles: Flow synthesis, bioactivity and toxicity. J Colloid Interface Sci. 2021;586:807?18. https://doi.org/10.1016/j.jcis.2020.11.005
  79. Li Y, Cummins E. Hazard characterization of silver nanoparticles for human exposure routes. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2020;55(6):704?25. https://doi.org/10.1080/10934529.2020.1735852
  80. Williams KM, Gokulan K, Cerniglia CE, Khare S. Size and dose dependent effects of silver nanoparticles exposure on intestinal permeability in an in vitro model of the human gut epithelium. J Nanobiotechnology. 2016;14(1):62. https://doi.org/10.1186/s12951-016-0214-9
  81. Shahare B, Yashpal M. Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicol Mech Methods. 2013;23(3):161?67. https://doi.org/10.3109/15376516.2013.764950
  82. Inkielewicz-Stepniak I, Santos-Martinez MJ, Medina C, Radomski MW. Pharmacological and toxicological effects of co-Exposure of human gingival fibroblasts to silver nanoparticles and sodium fluoride. Int J Nanomedicine. 2014;9:1677?87. https://doi.org/10.2147/IJN.S59172

Downloads

Download data is not yet available.