Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 1 (2025)

Adapting cucurbits to diverse environments: Insights from GEI studies

DOI
https://doi.org/10.14719/pst.4792
Submitted
23 August 2024
Published
21-12-2024 — Updated on 21-01-2025
Versions

Abstract

Recently, there has been increasing concern about crop failures and yield gaps attributed to climate change, as certain genotypes fail to achieve the desired yields or quality due to variations in external temperatures. To address this issue, breeders are working to develop climate-resilient varieties by incorporating relevant genes into cultivars or genotypes or by utilizing desirable source plants in the breeding process. Additionally, management practices are being implemented to mitigate environmental impacts. Multi-environmental trials (METs) are commonly employed by breeders to assess the adaptability of specific genotypes or cultivars across different locations and time periods. The data collected from these trials is then analyzed using stability statistical models designed for stability analysis, which allows for the evaluation of cultivar or genotype performance under varied environmental conditions. Over the past six decades, there has been a significant focus on modeling genotype-environment interactions (GEI), leading to the development of various mathematical methods and models to decipher GEI in METs, often referred to as "stability analyses." In the era of omics, phenomics techniques have emerged as valuable tools for screening morphological and physiological variations in genotypes resulting from environmental factors. This review emphasizes the importance of GEI in cucurbits, highlighting how environmental stress can alter physiological traits such as stomatal conductance, single leaf area, rooting depth, and membrane composition. Furthermore, it notes the accumulation of stress-related proteins under stress conditions, underscoring the significance of understanding GEI for effective crop management and breeding programs.

References

  1. Tripodi P, De Vita P, Fares C, Riefolo C, Di Fonzo N. Genetic progress in the Italian durum wheat cultivars released from 1900 to 2000. Eur J Agron. 2018;94:10-22.
  2. Voss-Fels KP, Cooper M, Hayes BJ. Accelerating crop genetic gains with genomic selection. Theor Appl Genet. 2019;132:669-86. https://doi.org/10.1007/s00122-018-3270-8
  3. Fischer RA, Byerlee D, Edmeades G. Crop yields and global food security. ACIAR: Canberra, ACT. 2014;8-11.
  4. Baker RJ. Tests for crossover genotype-environmental interactions. Can J Plant Sci. 1988;68(2):405-10. https://doi.org/10.4141/cjps88-051
  5. De Leon N, Jannink JL, Edwards JW, Kaeppler SM. Introduction to a special issue on genotype by environment interaction. Crop Sci. 2016;56(5):2081-89. https://doi.org/10.2135/cropsci2016.07.0002in
  6. Chauhan YS, Rachaputi RC. Defining agro-ecological regions for field crops in variable target production environments: A case study on mungbean in the northern grains region of Australia. Agric For Meteorol. 2014;194:207-17. https://doi.org/10.1016/j.agrformet.2014.04.007
  7. George T. Why crop yields in developing countries have not kept pace with advances in agronomy. Glob Food Secur. 2014;3(1):49-58. https://doi.org/10.1016/j.gfs.2013.10.002
  8. Lalnunkimi H, Topno SE, Kerketta A. Evaluation of cucumber (Cucumis sativus L.) genotypes under Prayagraj agro-climatic conditions. Pharma Innov J. 2022;11(1):90-93.
  9. Dhanusri V, Usha Nandhini Devi H, Sankari A, Djanaguiraman M, Veeranan Arun Giridhari V. Quantifying the effects of drought stress on cucumber genotypes differing in membrane integrity. J Appl Hortic. 2023;25(2):161-65. https://doi.org/10.37855/jah.2023.v25i02.28
  10. Esteras C, Nuez F, Picó B, YiHong W, Behera TK, Kole C. Genetic diversity studies in Cucurbits using molecular tools. Genetics Genomics Breeding of Cucurbits. 2011;2(1):140-98. http://dx.doi.org/10.1201/b11436-6
  11. Loy JB. Morpho-physiological aspects of productivity and quality in squash and pumpkins (Cucurbita spp.). Crit Rev Plant Sci. 2004;23(4):337-63. https://doi.org/10.1080/07352680490490733
  12. Xu Q, Paulsen AQ, Guikema JA, Paulsen GM. Protective mechanisms in the cucumber plant under high temperature stress during reproductive development. J Plant Physiol. 2017;174(1):147-56.
  13. Arief VN, Desmae H, Hardner C, DeLacy IH, Gilmour A, Bull JK, et al. Utilization of multiyear plant breeding data to better predict genotype performance. Crop Sci. 2019;59(2):480-90. https://doi.org/10.2135/cropsci2018.03.0182
  14. Aboughadareh AP, Yousefiazar M, Moghaddam M, Cheghamirza K, Sanjari S. Genotype-by-environment interaction and stability analysis for grain yield in bread wheat (Triticum aestivum L.) genotypes using AMMI and GGE biplot models. Cereal Res Commun. 2022;50(1):42-53.
  15. Zhang M, Xu S, Huang Y, Bie Z, Notaguchi M, Zhou J, et al. Non-destructive measurement of the pumpkin rootstock root phenotype using AZURE KINECT. Plants. 2022;11(9):1144. https://doi.org/10.3390/plants11091144
  16. Yang S, Zheng L, Gao W, Wang B, Hao X, Mi J, Wang M. An efficient processing approach for colored point cloud-based high-throughput seedling phenotyping. Remote Sens. 2020;12(10):1540. https://doi.org/10.3390/rs12101540
  17. Shi J, Wang Y, Li Z, Huang X, Shen T, Zou X. Simultaneous and nondestructive diagnostics of nitrogen/magnesium/potassium-deficient cucumber leaf based on chlorophyll density distribution features. Biosyst Eng. 2021;212:458-67. https://ui.adsabs.harvard.edu/link_gateway/2021BiSyE.212..458S/doi:10.1016/j.biosystemseng.2021.11.001
  18. Nirmala P, Gomathy M. Phenotyping and transcriptome analysis of pumpkin (Cucurbita moschata Duch.) for biotic and abiotic stress tolerance. Physiol Plant. 2023;177(1):e13784.
  19. Kutty MN, Rani PU, Rao PV. Molecular and biochemical responses of watermelon (Citrullus lanatus) to temperature stress. Acta Physiol Plant. 2013;35(4):1241-53.
  20. Nabwire JK, Kiggundu A, Ochwo-Ssemakula M, Seruwagi DK, Gibson P, Rubaihayo PR. Phenotypic and genotypic responses of watermelon (Citrullus lanatus) to downy mildew disease. Euphytica. 2022;218(2):1-16.
  21. Dhillon NP, Monforte AJ, Pitrat M, Pandey S, Singh PK, Reitsma KR, et al. Melon landraces of India: Contributions and importance. Plant Breed Rev. 2012;41:85-150. http://dx.doi.org/10.1002/9781118100509.ch3
  22. Srivastava R, Sharma V, Sharma P, Srivastava M, Pandey P. Genotype × environment interaction and stability analysis for yield and quality traits in bottle gourd (Lagenaria siceraria (Mol.) Standl.). Sci Hortic. 2020;261:108964.
  23. Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci. 2017;8:537. https://doi.org/10.3389/fpls.2017.00537
  24. Staub JE, Serquen FC, Gupta M. Genetic markers, map construction and their application in plant breeding. HortScience. 1996;31(5):729-41. https://doi.org/10.21273/HORTSCI.31.5.729
  25. Monforte AJ, Eduardo I, Abad S, Arús P. Inheritance of fruit firmness in melon (Cucumis melo L.). Euphytica. 2004;136(2):211-18.
  26. Weng Y, Colle M, Wang Y, Yang L, Rubinstein M, Sherman A, et al. QTL mapping of resistance to Pseudoperonospora cubensis in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet. 2011;123(2):187-98.
  27. Pushpalatha N, Anjanappa M, Devappa V, Pitchaimuthu M. Genetic variability and heritability for growth and yield in cucumber (Cucumis sativus L.). J Hortic Sci. 2016;11(1):123-27. https://doi.org/10.24154/jhs.v11i1.100
  28. Arabidopsis genome initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796-815. https://doi.org/10.1038/35048692
  29. International rice genome sequencing project. The map-based sequence of the rice genome. Nature. 2005;436:793-800. https://doi.org/10.1038/nature03895
  30. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009;41(12):1275-81. https://doi.org/10.1038/ng.475
  31. Kersey PJ. Plant genome sequences: Past, present, future. Curr Opin Plant Biol. 2019;48:1-8. https://doi.org/10.1016/j.pbi.2018.11.001
  32. Zhu C, Li X, Zheng J. Transcriptome profiling using Illumina-and SMRT based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection. Gene. 2018; 666:123-33. https://doi.org/10.1016/j.gene.2018.05.004
  33. Li Q, Li H, Huang W, Xu Y, Zhou Q, Wang S, et al. A chromosome-scale genome assembly of cucumber (Cucumis sativus L.). GigaScience. 2019;8:giz072.
  34. Castanera R, Ruggieri V, Pujol M, Garcia-Mas J, Casacuberta JM. An improved melon reference genome with single-molecule sequencing uncovers a recent burst of transposable elements with potential impact on genes. Front Plant Sci. 2020;10:1815.
  35. Guo J, Xu W, Hu Y, Huang J, Zhao Y, Zhang L, et al. Phylotranscriptomics in Cucurbitaceae reveal multiple whole-genome duplications and key morphological and molecular innovations. Mol Plant. 2020;13:1117-33. https://doi.org/10.1016/j.molp.2020.05.011
  36. Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Gomez CM, et al. De novo assembly of the zucchini genome reveals a whole whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol J. 2018;16:1161 1161-71.
  37. Barrera-Redondo J, Ibarra-Laclette E, Vázquez-Lobo A, Guerrero-Gutierrez YT, Vega GS, Pinero D. The genome of Cucurbita argy-rosperma (silver-seed gourd) reveals faster rates of protein-coding gene and long noncoding RNA turnover and neofunc-tionalization within Cucurbita. Mol Plant. 2019;12:506-20. https://doi.org/10.1016/j.molp.2018.12.023
  38. Fu A, Wang Q, Mu J, Ma L, Wen C, Zhao X, et al. Combined ge-nomic, transcriptomic and metabolomic analyses provide in-sights into chayote (Sechium edule) evolution and fruit develop-ment. Hortic Res. 2021;8:35. https://doi.org/10.1038/s41438-021-00487-1
  39. Ma L, Wang Q, Zheng Y, Guo J, Yuan S, Fu A, et al. Cucurbitaceae genome evolution, gene function and molecular breeding. Hor-tic Res. 2022;9:uhab057. https://doi.org/10.1093/hr/uhab057
  40. Zhang Y, Zhao C, Du J, Guo X, Wen W, Gu S, et al. Crop phenomics: Current status and perspectives. Front Plant Sci. 2019;10:714. https://doi.org/10.3389/fpls.2019.00714
  41. Guo S, Zhao S, Sun H, Wang X, Wu S, Lin T, et al. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet. 2019;51(11):1616-23. https://doi.org/10.1038/ s41588-019-0518-4
  42. Garcia-Mas J, Benjak A, Sanseverino W, Baurgeois M, Mir G, Gon-zalez VM, et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci. USA. 2012;109 (29):11872-77. https://doi.org/10.1073/pnas.1205415109
  43. Piepho HP. Missing observations in the analysis of stability. Heredity. 1994;72(2):141-45. https://doi.org/10.1038/hdy.1994.20
  44. Yan W, Hunt LA. Biplot analysis of diallel data. Crop Sci. 2002;42(1):21-30. https://doi.org/10.2135/cropsci2002.0021
  45. Becker HC. Correlations among some statistical measures of phenotypic stability. Euphytica. 1981;30:835-40. https://doi.org/10.1007/BF00038812
  46. Lin CS, Binns MR, Lefkovitch LP. Stability analysis: Where do we stand Crop Sci. 1986;26(5): 894-900. https://doi.org/10.2135/cropsci1986.0011183X002600050012x
  47. Truberg B, Huehn M. Contributions to the analysis of genotype × environment interactions: Comparison of different parametric and non-parametric tests for interactions with emphasis on crossover interactions. J Agron Crop Sci. 2000;185(4):267-74. http://dx.doi.org/10.1046/j.1439-037x.2000.00437.x
  48. Flores F, Moreno MT, Cubero JI. A comparison of univariate and multivariate methods to analyze G × E interaction. Field Crops Res. 1998;56(3):271-86. https://doi.org/10.1016/S0378-4290(97)00095-6
  49. Huhn M. Nonparametric measures of phenotypic stability. Part 1: Theory. Euphytica. 1990;47:189-94. https://doi.org/10.1007/BF00024241
  50. Pour-Aboughadareh AM, Yousefian H, Moradkhani P, Poczai, Siddique KHM. Stabilitysoft: A new online program to calculate parametric and non-parametric stability statistics for crop traits. Appl Plant Sci. 2019;7(1):e1211. https://doi.org/10.1002/aps3.1211
  51. Finlay KW, Wilkinson GN. The analysis of adaptation in a plant-breeding programme. Aust J Agr Res. 1963;14:742-54. http://dx.doi.org/10.1071/AR9630742
  52. Eberhart SAT, Russell WA. Stability parameters for comparing varieties. Crop Sci. 1966;6:36-40. http://dx.doi.org/10.2135/cropsci1966.0011183X000600010011x
  53. Wricke G. Evaluation method for recording ecological differences in field trials. Z Pflanzenzücht. 1962;47:92-96.
  54. Shukla GK. Some statistical aspects of partitioning genotype environmental components of variability. Heredity. 1962;29:237-45. https://doi.org/10.1038/hdy.1972.87
  55. Francis TR, Kannenberg LW. Yield stability studies in short-season maize: A descriptive method for grouping genotypes. Can J Plant Sci. 1978;58:1029-34. https://doi.org/10.4141/cjps78-157
  56. Plaisted RI, Peterson LC. A technique for evaluating the ability of selection to yield consistently in different locations or seasons. Am J Potato Res. 1959;36:381-85. https://doi.org/10.1007/bf02852735
  57. Plaisted RL. A shorter method for evaluating the ability of selections to yield consistently over locations. Am J Potato Res. 1960;37:166-72. https://doi.org/10.1007/BF02855271
  58. Kang MS. Modified rank-sum method for selecting high yielding, stable crop genotypes. Cereal Res Commun. 1991;19:361-64.
  59. Zobel RW, Wright MJ, Gauch Jr HG. Statistical analysis of a yield trial. Agron J. 1988;80(3):388-93. https://doi.org/10.2134/agronj1988.00021962008000030002x
  60. Gauch Jr HG. AMMI analysis on yield trials. CIMMYT Wheat Special Report (CIMMYT). 1992.
  61. Gauch Jr HG, Piepho HP, Annicchiarico P. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 2008;48(3):866-89. http://dx.doi.org/10.2135/cropsci2007.09.0513
  62. Iwo AG, Odor OE. Genotype x environment interaction for fruit yield of some cucumber (Cucumis sativus) genotypes. Global J Agric Sci. 2018;17(1):55-64. https://doi.org/10.4314/gjass.v17i1.6
  63. Smith AB, Cullis BR, Thompson R. The analysis of crop cultivar breeding and evaluation trials: An overview of current mixed model approaches. J Agric Sci. 2005;143(6):449-62. http://dx.doi.org/10.1017/S0021859605005587
  64. Resende MDV. Matemática e estatística na análise de experimentos e no melhoramento genético. Embrapa Florestas-Livro científico (ALICE). 2007.
  65. Verma AK, Singh D. Stability analysis and identification of superior genotypes in bread wheat (Triticum aestivum L.) using AMMI, GGE biplot and BLUP models. Cereal Res Commun. 2021;49(2):222-32.
  66. Silva EMD, Nunes EWLP, Costa JMD, Ricarte ADO, Nunes GHDS, Aragão FASD. Genotype x environment interaction, adaptability and stability of ‘Piel de Sapo’ melon hybrids through mixed models. Crop Breed Appl Biot. 2019;19:402-11. https://doi.org/10.1590/1984-70332019v19n4a57
  67. Yan W. GGEbiplot—A windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron J. 2001;93(5):1111-18. https://doi.org/10.2134/agronj2001.9351111x
  68. Yan W, Tinker NA. Biplot analysis of multi-environment trial data: Principles and applications. Can J Plant Sci. 2006;86(3):623-45. https://doi.org/10.4141/P05-169
  69. Nataraj V, Bhartiya A, Singh CP, Devi HN, Deshmukh MP, Verghese P, et al. WAASB-based stability analysis and simultaneous selection for grain yield and early maturity in soybean. Agron J. 2021;113(4):3089-99. http://dx.doi.org/10.1002/agj2.20750
  70. Naroui Rad MR, Bakhshi B. GGE biplot tool to identify melon fruit weight stability under different drought stress conditions. Int J Veg Sci. 2020;26:123-35. http://dx.doi.org/10.1080/19315260.2020.1805538
  71. Mortazavian SM, Azizi-Nia S. Nonparametric stability analysis in multi-environment trial of canola. Turk J Field Crops. 2014;19(1):108-17. http://dx.doi.org/10.17557/tjfc.41390
  72. Fox P, Skovmand B, Thompson B, Braun HI, Cormier R. Yield and adaptation of hexaploid spring triticale. Euphytica. 1990;47:57-64. https://doi.org/10.1007/BF00040364
  73. Nassar R, Huhn M. Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability. Biometrics. 1987;43:45-53. https://doi.org/10.2307/2531947
  74. Kang MS. A rank-sum method for selecting high-yielding, stable corn genotypes. Cereal Res. Commun. 1988;16:113-15.
  75. Thennarasu K. On certain non-parametric procedures for studying genotype-environment interactions and yield stability. Doctoral Dissertation, Indian Agricultural Research Institute, Division of Agricultural Statistics, New Delhi, India. 1995.
  76. Davis BD. The isolation of biochemically deficient mutants of bacteria by means of penicillin. Proc Natl Acad Sci. U S A. 1949;35:1-10. https://doi.org/10.1073/pnas.35.1.1
  77. Houle D, Govindaraju DR, Omholt S. Phenomics: The next challenge. Nat Rev Genet. 2010;11:855-66. https://doi.org/10.1038/nrg2897
  78. Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, et al. Crop phenomics and high-throughput phenotyping: Past decades, current challenges and future perspectives. Mol Plant. 2020;13(2):187-214. https://doi.org/10.1016/j.molp.2020.01.008
  79. Perez-Sanz F, Navarro PJ, Egea-Cortines M. Plant phenomics: An overview of image acquisition technologies and image data analysis algorithms. GigaScience. 2017;6:gix092. https://doi.org/10.1093/gigascience/gix092
  80. Fiorani F, Schurr U. Future scenarios for plant phenotyping. Annu Rev Plant Biol. 2013;64:267-91. https://doi.org/10.1146/annurev-arplant-050312-120137
  81. Orgogozo V, Morizot B, Martin A. The differential view of genotype–phenotype relationships. Front Genet. 2015;6:179. https://doi.org/10.3389/fgene.2015.00179
  82. Abdullah-Zawawi MR, Govender N, Harun S, Nor Muhammad NA, Zainal Z, Mohamed-Hussein ZA. Multi-omics approaches and resources for systems-level gene function prediction in the plant kingdom. Plants. 2022;11(19):2614. https://doi.org/10.3390/plants11192614
  83. Qian Y, Huang SSC. Improving plant gene regulatory network inference by integrative analysis of multi-omics and high resolution data sets. Curr Opin Syst Biol. 2022;22:8-15. https://doi.org/10.1016/j.coisb.2020.07.010
  84. Lobos GA, Camargo AV, del Pozo A, Araus JL, Ortiz R, Doonan JH. Editorial: Plant phenotyping and phenomics for plant breeding. Front Plant Sci. 2017;8:2181. https://doi.org/10.3389/fpls.2017.02181
  85. Aasen H, Honkavaara E, Lucieer A, ZarcoTejada PJ. Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures and data correction workflows. Remote Sens. 2018;10:1091. https://doi.org/10.3390/rs10071091
  86. Sheelamary S, Lakshmi K, Boomiraj K. High throughput phenotyping for abiotic stress selection. Vigyan Varta: An International E-Magazine for Science Enthusiasts. Vigyan Varta. 2024;5(2):19-22.
  87. Rahman H, Ramanathan V, Jagadeeshselvam N, Ramasamy S, Rajendran S, Ramachandran M, et al. Phenomics: Technologies and applications in plant and agriculture. In: Plant Omics: The Omics of Plant Science (Springer, New Delhi). 2015:385-411. https://doi.org/10.1007/978-81-322-2172-2_13
  88. Tak S, Kaushik RA, Ameta KD, Dubey RB, Rathore RS. Genotype environment interaction and correlation of some stability parameters of fruit characters in Cucumis lines. Pharma Innov J. 2022;11(2):1983-88.
  89. Odor EO, Iwo GA, Obok EE. Graphical assessment of yield stability and adaptation of cucumber (Cucumis sativus L.) genotypes in cross river state. Niger J Agric Crop Res. 2017;5(6):108-16.
  90. Dia M, Wehner TC, Elmstrom GW, Gabert A, Motes JE, Staub JE, et al. Genotype × environment interaction for yield of pickling cucumber in 24 U.S. Environments. Open Agric. 2018;3:1-16. https://doi.org/10.1515/opag-2018-0001
  91. Olaniyi OO, Kehinde OB, Oduwaye OA, Adenuga OO, Mapayi EF, Adepoju AF. Genotype main effect and genotype × environment (GGE bi-plot) model of multi-environmental trial of melon (Citrullus lanatus). Afr J Agric Res. 2013;8(45):5682-91. http://dx.doi.org/10.19026/rjaset.6.4061
  92. Sharma SP, Leskovar DI, Crosby KM, Ibrahim AMH. GGE biplot analysis of genotype-by-environment interactions for melon fruit yield and quality traits. Hort Science. 2020;55(4):533-42. https://doi.org/10.21273/HORTSCI14760-19
  93. Usha Nandhini Devi H, Swarnapriya R. Screening of cucumber (Cucumis sativus L.) genotypes for growth, yield and quality parameters under Coimbatore conditions. Asian J Sci Technol. 2024;15(2):12861-64.
  94. Yadav RK, Ram HH. Genotype-environment interaction and stability analysis for yield and yield attributing characters in muskmelon. Indian J Hortic. 2010;67(Special Issue):179-84.
  95. Poorter H, Fiorani F, Stitt M. The art of growing plants for experimental purposes: A practical guide for the plant biologist. Funct Plant Biol. 2012;39:821-38. https://doi.org/10.1071/FP12028
  96. Xu Y. Envirotyping for deciphering environmental impacts on crop plants. Theor Appl Genet. 2016;129:653-73. https://doi.org/10.1007/s00122-016-2691-5
  97. Araus JL, Kefauver SC, Zaman-Allah M. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci. 2018;23:451-66. https://doi.org/10.1016/j.tplants.2018.02.001
  98. Xu Y, Liu X, Fu J. Enhancing genetic gain through genomic selection: From livestock to plants. Plant Commun. 2020;1:100005. https://doi.org/10.1016/S2666-5662(20)30005-8

Downloads

Download data is not yet available.