Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 1 (2025)

Evaluation of antimalarial potential of Artemisia nilagirica against chloroquine resistant and sensitive strains of Plasmodium falciparum

DOI
https://doi.org/10.14719/pst.4806
Submitted
25 August 2024
Published
17-02-2025 — Updated on 22-02-2025
Versions

Abstract

Malaria represents a major vector borne global health problem. The greatest challenge in the malarial treatment is due to the increasing resistance of parasite to antimalarial drugs. The rise of drug-resistant malaria parasites is undermining the effectiveness of more potential drugs. Consequently, there is an urgent requirement for novel antimalarial compounds to manage this disease. Therefore, the current investigation is designed to analyze the antimalarial properties of Artemisia nilagirica against chloroquine (CQ) resistant K1 strain and chloroquine-sensitive 3D7 strain through different solvent extracts of various plant parts (root, stem, leaf and flower). Among the multiple extracts tested, the methanolic flower extract exhibited the highest antiplasmodial activity against CQ resistant K1 strain (IC50= 5.76 ?g/mL) and CQ-sensitive 3D7 strain (IC50= 6.24 ?g/mL) respectively. The lowest values of antimalarial activity were reported in aqueous extract of root against CQ resistant K1 strain (IC50= 68.83 ?g/mL) and CQ sensitive 3D7 strain (IC50= 70.02 ?g/mL). However, moderate activity was reported in chloroform, n-hexane, petroleum ether and ethanol extracts. The GC-MS investigation of methanol extracts of flower confirmed the availability of specific bioactive compounds like bicyclo (2.2.1) heptane-2-one 1,7,7-trimethyl, bicyclo (3.1.1) heptanes 2,4,6-trimethyl, 1,6- cyclodecadiene 1- methyl-5- methylene-8-(1-methyl ethyl) and 3,3- iminosprolamine, 3- methyl-3,5 (cyanoethyl) tetrahydro-4-thiopyranone which are responsible for antiplasmodial activity. The present study’s findings confirm the potential antimicrobial activity of flower methanolic extracts of A. nilagirica against CQ resistant and sensitive strains of P. falciparum.

References

  1. Murray GPD, Lissenden N, Jones J, Voloshin V, Toe HK, Sherrard- Smith E, et al. Barrier bednets target malaria vectors and expand the range of usable insecticides. Nat Microbiol. 2020;5(1):40-47. https://doi.org/10.1038/s41564-019-0607-2
  2. Nathan SS, Hisham A, Jayakumar G. Larvicidal and growth inhibition of the malaria vector Anopheles stephensi by triterpenes from Dysoxylum malabaricum and Dysoxylum beddomei. Fitoterapia. 2008;79(2):106-11. https://doi.org/10.1016/j.fitote.2007.07.013
  3. WHO guidelines for malaria. World Health Organization; 2023 Mar 14 [Internet]. Available from: https://www.who.int/ publications/i/item/guidelines-for-malaria
  4. Kumar A, Valecha N, Jain T, Dash AP. Burden of malaria in India: retrospective and prospective view. Am J Trop Med Hyg. 2007;77 (6):69-78. https://doi.org/10.4269/ajtmh.2007.77.69
  5. Kamal S, Chandra R, Singh RM, Kumar A, Singh RK, Srivastava R. Mass drug administration (MDA) for lymphatic filariasis elimination in Uttar Pradesh: lessons learnt. J Commun Dis. 2023;60-70. https:// doi.org/10.24321/0019.5138.202033
  6. Dhal P, Rout JR, Dash PK, Panda S, Pati P, Rath CC, et al. Larvicidal and pupicidal activity of Clerodendrum philippinum Schauer leaf extracts against Anopheles stephensi and Aedes aegypti. Phcog J. 2018;10(6):1137-42. https://doi.org/10.5530/pj.2018.6.194
  7. Panda S, Rout JR, Pati P, Ranjit M, Sahoo SL. Antimalarial activity of Artemisia nilagirica against Plasmodium falciparum. J Parasit Dis. 2018;42(1):22-27. https://doi.org/10.1007/s12639-017-0956-9
  8. Flegg JA, Guerin PJ, White NJ, Stepniewska K. Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator. Malar J. 2011;10:339. https:// doi.org/10.1186/1475-2875-10-339
  9. Tane P, Tatsimo SD, Ayimele GA, Connolly JD. Bioactive metabolites from Aframomum species. In: 11th NAPRECA Symposium Book of Proceedings. Madagascar: Antananarivo. 2005;214:214-23. Available from: https://www.researchgate.net/ publication/268424491_Bioactive_metabolites_from_Aframomum_s pecies
  10. Kodippili K, Wanigasekera DR, Sirimal P, Udagama PV. An investigation of the antimalarial activity of Artemisia vulgaris leaf extract in a rodent malaria model. Int J Green Pharm. 2011;5(4):276- 81. https://doi.org/10.4103/0973-8258.94347
  11. Hidayati AR, Widyawaruyanti A, Ilmi H, Tanjung M, Widiandani T, Siswandono, et al. Antimalarial activity of flavonoid compound isolated from leaves of Artocarpus altilis. Phcog J. 2020;12(4):835-42. https://doi.org/10.5530/pj.2020.12.120
  12. Ginsburg H, Deharo E. A call for using natural compounds in the development of new antimalarial treatments-an introduction. Malar J. 2011;10(Suppl1):1-6. https://doi.org/10.1186/1475-2875-10-S1-S1
  13. Tsabang N, Fokou PV, Tchokouaha LR, Noguem B, Bakarnga-Via I, Nguepi MS, et al. Ethnopharmacological survey of Annonaceae medicinal plants used to treat malaria in four areas of Cameroon. J Ethnopharmacol. 2012;139(1):171-80. https://doi.org/10.1016/ j.jep.2011.10.035
  14. Bele A, Khale A. An overview on thin layer chromatography. Int J Pharm Sci Res. 2011;2(2):256-67. http://dx.doi.org/10.13040/ IJPSR.0975-8232.2(2).256–67
  15. Batista R, Silva AJJr, de Oliveira AB. Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Nonalkaloidal natural products. Molecules. 2009;14(8):3037-72. https:// doi:10.3390/molecules14083037
  16. Waiganjo B, Moriasi G, Onyancha J, Elias N, Muregi F. Antiplasmodial and cytotoxic activities of extracts of selected medicinal plants used to treat malaria in Embu County, Kenya. J Parasitol Res. 2020;8871375. https://doi.org/10.1155/2020/8871375
  17. Randrianarivelojosia M, Raveloson A, Randriamanantena A, Juliano JJ, Andrianjafy T, Raharimalala LA, Robert V. Lessons learnt from the six decades of chloroquine use (1945-2005) to control malaria in Madagascar. Trans R Soc Trop Med Hyg. 2009;103(1):3-10. https:// doi.org/10.1016/j.trstmh.2008.09.013
  18. Payne D. Did medicated salt hasten the spread of chloroquine resistance in Plasmodium falciparum?. Parasitol Today. 1988;4:112- 15. https://doi.org/10.1016/0169-4758(88)90042-7
  19. Duraisingh MT, Cowman AF. Contribution of the pfmdr1 gene to antimalarial drug-resistance. Acta Trop. 2005;94(3):181-90. https:// doi.org/10.1016/j.actatropica.2005.04.008
  20. Sidhu AB, Verdier-Pinard D, Fidock DA. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science. 2002;5591:210-13. https://doi.org/10.1126/ science.1074045
  21. Chinappi M, Via A, Marcatili P, Tramontano A. On the mechanism of chloroquine resistance in Plasmodium falciparum. PLoS One. 2010;5 (11):e14064. https://doi.org/10.1371/journal.pone.0014064
  22. Wicht KJ, Mok S, Fidock DA. Molecular mechanisms of drug resistance in Plasmodium falciparum malaria. Annu Rev Microbiol. 2020;74:431-54. https://doi.org/10.1146/annurev-micro-020518-115546
  23. Joshi V, Agurto C, Barriga S, Nemeth S, Soliz P, MacCormick JL, et al. Automated detection of malarial retinopathy in digital fundus images for improved diagnosis in Malawian children with clinically defined cerebral malaria. Sci Rep. 2017;7:42703. https:// doi.org/10.1038/srep42703
  24. Suresh KP. An overview of randomization techniques: an unbiased assessment of outcome in clinical research. J Hum Reprod Sci. 2011;4(1):8-11. https://doi.org/10.4103/0974-1208.82352
  25. Rani A, Nagpal BN, Singh H, Mehta SS, Srivastava A, Saxena R. Potential role of Anopheles subpictus as a malaria vector in Ghaziabad district, Uttar Pradesh, India. Int J Trop Insect Sci. 2021;41:1107-17. https://doi.org/10.1007/s42690-020-00296-4
  26. Sati P, van Gelderen P, Silva AC, Reich DS, Merkle H, de Zwart JA, Duyn JH. Micro-compartment specific T2* relaxation in the brain. Neuroimage. 2013;77:268-78. https://doi.org/10.1016/ j.neuroimage.2013.03.005
  27. Stappen I, Wanner J, Tabanca N, Wedge DE, Ali A, Khan IA, et al. Chemical composition and biological effects of Artemisia maritima and Artemisia nilagirica essential oils from wild plants of western Himalaya. Planta Med. 2014;80(13):1079-87. https:// doi.org/10.1055/s-0034-1382957
  28. Valecha N, Biswas S, Badoni V, Bhandari KS, Sati OP. Antimalarial activity of Artemisia japonica, Artemisia maritima and Artemisia nilegarica. Indian J Pharmacol. 1994;26(2):144-46.
  29. Sulekha MP, Reddy G, Muthuvel A. Physicochemical and phytochemical standardization of polyherbal Siddha formulation 'Karisalai Chooranam'. Indian J Tradit Knowl. 2017;16(2):263-69.
  30. Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193(4254):673-75. https://doi.org/10.1126/ science.781840
  31. Kalra BS, Chawla S, Gupta P, Valecha N. Screening of antimalarial drugs: an overview. Indian J Pharmacol. 2006;38(1):5-12.
  32. Kwansa-Bentum B, Agyeman K, Larbi-Akor J, Anyigba C, Appiah- Opong R. In vitro assessment of antiplasmodial activity and cytotoxicity of Polyalthia longifolia leaf extracts on Plasmodium falciparum strain NF54. Malar Res Treat. 2019;2019:6976298. https:// doi.org/10.1155/2019/6976298
  33. White NJ. The role of antimalarial drugs in eliminating malaria. Malar J. 2008;7:1-6. https://doi.org/10.1186/1475-2875-7-S1-S8
  34. Habibi P, Shi Y, Fatima GM, Khan I. Plants as sources of natural and recombinant antimalaria agents. Mol Biotechnol. 2022;64(11):1177- 97. https://doi.org/10.1007/s12033-022-00499-9
  35. Ahmed MA, Ameyaw EO, Ackah-Armah F, Acheampong DO, Amoani B, Ampomah P, et al. In vitro and in vivo antimalarial activities of Avicennia africana P. Beauv. (Avicenniaceae) ethanolic leaf extract. J Tradit Complement Med. 2021;12(4):391-401. https:// doi.org/10.1016/j.jtcme.2021.11.004
  36. Sidiki NNA, Nadia NAC, Cedric Y, Azizi MA, Kevin TDA, Guy-Armand GN, et al. In vitro antiplasmodial, antioxidant and cytotoxicity activity of Terminalia macroptera traditionally used in Cameroon against malaria. J Herb Med. 2023;41:100723. https:// doi.org/10.1016/j.hermed.2023.100723
  37. Wahyuni DK, Wacharasindhu S, Bankeeree W, Wahyuningsih SPA, Ekasari W, Purnobasuki H, et al. In vitro and in vivo antiplasmodial activities of leaf extracts from Sonchus arvensis L. BMC Complement Med Ther. 2023;23(47):1-12. https://doi.org/10.1186/s12906-023-03871-7
  38. Nwonuma CO, Balogun EA, Gyebi GA. Evaluation of antimalarial activity of ethanolic extract of Annona muricata L.: an in vivo and an in silico approach. J Evid Based Integr Med. 2023;28:2515690X231165104. https://doi.org/10.1177/2515690x231165104
  39. Oladeji OS, Abimbola PO, Adewumi OD. In vivo antiplasmodial activity and phytochemical composition of Landolphia dulcis (Sabine ex G. Don) Pichon bark and leaf extracts. S Afr J Bot. 2023;159:43-50. https://doi.org/10.1016/j.sajb.2023.05.031
  40. Chaniad P, Phuwajaroanpong A, Techarang T, Viriyavejakul P, Chukaew A, Punsawad C. Antiplasmodial activity and cytotoxicity of plant extracts from the Asteraceae and Rubiaceae families. Heliyon. 2022;8(1):e08848. https://doi.org/10.1016/j.heliyon.2022.e08848
  41. Ejigu YW, Endalifer BL. In vitro anti-plasmodial activity of three selected medicinal plants that are used in local traditional medicine in Amhara region of Ethiopia. BMC Pharmacol Toxicol. 2023;24 (1):30. https://doi.org/10.1186/s40360-023-00672-z
  42. Somsak V, Borkaew P, Klubsri C, Dondee K, Bootprom P, Saiphet B. Antimalarial properties of aqueous crude extracts of Gynostemma pentaphyllum and Moringa oleifera leaves in combination with artesunate in Plasmodium berghei-infected mice. J Trop Med. 2016;8031392. https://doi.org/10.1155/2016/8031392
  43. Boampong NJ, Ameyaw E, Kyei S. In vivo antimalarial activity of stem bark extracts of Plumeria alba against Plasmodium berghei in imprinting control region mice. Rep Parasitol. 2013;3:19-25. https:// doi.org/10.2147/rip.s45492
  44. Chaniad P, Phuwajaroanpong A, Plirat W, Konyanee A, Septama AW, Punsawad C. Assessment of antimalarial activity of crude extract of Chan-Ta-Lee-La and Pra-Sa-Chan-Dang formulations and their plant ingredients for new drug candidates of malaria treatment: In vitro and in vivo experiments. PLoS One. 2024;19(1):e0296756. https://doi.org/10.1371/journal.pone.0296756
  45. Moyo P, Mugumbate G, Eloff JN, Louw AI, Maharaj VJ, Birkholtz LM. Natural products: A potential source of malaria transmission blocking drugs?. Pharmaceuticals (Basel). 2020;13(9):251. https:// doi.org/doi:10.3390/ph13090251
  46. Bairy A, Anumula V, Sujatha D, Veera S, Jyothi P, Allini VR, Thammidala CR. GC–MS analysis of phytocomponents from the leaf, stem and root methanolic extracts of Artemisia nilagirica (C.B. Clarke) Pamp. J Adv Zool. 2024;45(2):1810-19. https:// doi.org/10.53555/jaz.v45i2.4773
  47. Shukla V, Pala Z, Alok A, Desai N. Screening of different artemisia spp. from western ghats of Maharashtra for an antimalarial compound-artemisinin. Am J Plant Sci. 2015;6:1619-32. https:// doi.org/10.4236/ajps.2015.69162

Downloads

Download data is not yet available.