This study investigates the isolation and characterization of Fusarium equiseti, a fungal pathogen causing wilt in bitter gourd. It explores the antifungal activity of essential oils, particularly clove oil, as a natural management approach. The pathogen was isolated from wilt-infected bitter gourd stems and it was confirmed as F. equiseti morphologically by the presence of three-septate falcate macroconidia and globose microconidia and also confirmed molecularly by PCR amplification of the ITS region (PP501044.1). Among the tested essential oils, clove oil demonstrated the highest mycelial growth inhibition (100%) at a concentration of 0.5%, followed by peppermint, wintergreen and tea tree oils. In comparison, neem oil exhibited the least inhibition (15.54%). GC-MS analysis of clove oil revealed 38 compounds, where eugenol is the predominant compound that played a crucial role in antifungal activity. Additionally, metabolic analysis revealed several enriched pathways in F. equiseti during its interaction with clove oil, particularly those involved in lipid metabolism and energy production. Pot culture experiments confirmed the efficacy of clove oil in reducing disease severity and incidence in bitter gourd, achieving a 66.99 % reduction when combined with soil application.
Furthermore, clove oil-treated plants showed increased activity of defense-related enzymes, including peroxidase (PO), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL), suggesting the induction of systemic resistance. This study highlights the potential of clove oil as an eco-friendly alternative to synthetic fungicides for managing F. exquisite-induced wilt in bitter gourd. Future research should focus on optimizing clove oil application methods and understanding its interactions with fungal pathogens at the molecular level to enhance its efficacy in sustainable disease management.