Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 2 (2025)

Costus igneus N. E. Br. A molecular assessment of its pharmacological characteristics and bioactive compounds

DOI
https://doi.org/10.14719/pst.5056
Submitted
13 September 2024
Published
18-03-2025 — Updated on 01-04-2025
Versions

Abstract

     Costus igneus , commonly referred to as the “Step ladder” or “Insulin plant,” is a perennial herb native to the Western Ghats of India. Renowed for its hypoglycemic properties, the species is considered threatened, highlighting the need for urgent conservation efforts. Costus igneus is a rich source of valuable industrially bioactive compounds, including stigmasterol, lupeol, quercetin, diosgenin, and bis (2'-ethylhexyl)-1, 2-benzene-dicarboxylate. It is well-recognized for its ethonomedicinal applications in India, Africa, China. This plant exhibits a wide geographic distribution and is characterized by diverse descriptions, taxonomic classifications, and genetic variability. Extensive molecular level research has employed advanced genetic engineering techniques, focusing on identifying relevant markers, conducting protein analyses, and performing isozyme studies. Traditionally, C. igneus has been utilized for its stimulant, carminative, diuretic, digestive, hepatoprotective, and antidiabetic properties. This review highlights the urgent need for researchers and stakeholders to leverage advanced biotechnological methods, such as genetic diversity assessment, the implementation of conservation strategies, ecosystem monitoring, and species restoration programs for C. igneus. The comprehensive scope of the study encompasses various facets of C. igneus , including agro cultivation, medicinal chemistry, health applications, molecular and genetic approaches, and biotechnological advancements. In-depth research on this species has the potential to unveil its therapeutic potential, paving the way for the development of innovative plant-based treatments.

References

  1. Pawar V, Pawar P. Costus speciosus an important medicinal plant. Int J Sci Res. 2014;3(7):28–33. https//doi.org/10.21275/2014885.
  2. Sabu M. Zingiberaceae and Costaceae of South India. Indian Association for Angiosperm Taxonomy; 2006. https//iaat.org.in/books_zingiberaceae-and-costaceae-of-south-india.html
  3. Christenhusz MJ, Byng JW. The number of known plants species in the world and its annual increase. Phytotaxa. 2016;261(3):201–17. https //doi.org/10.11646/phytotaxa.261.3.1
  4. Mathew F, Varghese B. A review on medicinal exploration of Costus igneus the insulin plant. Int J Pharm Sci Rev Res. 2019;54(2):51–57.
  5. Santosh G. Molecular characterization of spotted spiral ginger (Costus pictus)-An insulin plant. University of Agricultural Sciences, GKVK; 2015. https //krishikosh.egranth.ac.in/items/415e5039-7d63-4f5e-9cdf-c7cd723b3850
  6. Joshi BN, Munot H, Hardikar M, Kulkarni AA. Orally active hypoglycemic protein from Costus igneus NE Br. an in vitro and in vivo study. Biochemical and Biophysical Research Communications. 2013;436(2):278–82. https//doi.org/10.1016/j.bbrc.2013.05.093
  7. Hegde PK, Rao HA, Rao PN. A review on Insulin plant (Costus igneus Nak). Pharmacognosy Reviews. 2014;8(15):67. https //doi.org/10.52711/0974-360X.2022.00410
  8. Grewal A, Rani P. A new record of chromosome count for Costus pictus D. Don. Cytologia. 2022;87(4) 391–95. https //doi.org/10.1508/cytologia.87.391
  9. Pazhanichamy K, Pavithra S, Rubini S, Lavanya B, Ramya I, Eevera T. Morphological, anatomical and proximate analysis of leaf, root, rhizome of Costus igneus. Journal of Pharmacy Research. 2010;3(4):747–52. https//doi.org/10.5281/zenodo.12739414
  10. Tyagi B. The mechanism of 2n pollen formation in diploids of Costus speciosus (Koenig) JE Smith and role of sexual polyploidization in the origin of intraspecific chromosomal races. Cytologia. 1988;53(4):763–70. https//doi.org/10.1508/cytologia.53.763
  11. Maas PJ. Renealmia (Zingiberaceae-Zingiberoideae) Costoideae (Additions)(Zingiberaceae). Flora Neotropica. 1977;18:1–218. https//www.scirp.org/reference/referencespapers?referenceid=528669
  12. Irwin DE. Phylogeographic breaks without geographic barriers to gene flow. Evolution. 2002;56(12):2383-94. https //doi.org/10.1111/j.0014-3820.2002.tb00164.x
  13. Grover A, Sharma P. Development and use of molecular markers past and present. Critical Reviews in Biotechnology. 2016;36(2):290–302. https//doi.org/10.3109/07388551.2014.959891
  14. Govindaraj M, Vetriventhan M, Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances an overview of its analytical perspectives. Genetics Research International. 2015. https//doi.org/10.1155/2015/431487
  15. Kuttappety M, Surendran K, Pillai PP. Cross section of genetic diversity in mainland and insular populations of Costus speciosus (Koen ex. Retz.) Sm. using SPAR markers reveal patterns linked to allopolyploidy and biogeography. Plant Science Today. 2023;10(2):8–19. https //doi.org/10.14719/pst.1805
  16. Yip PY, Chau CF, Mak CY, Kwan HS. DNA methods for identification of Chinese medicinal materials. Chinese Medicine. 2007;2:1–19. https //doi.org/10.1186/1749-8546-7-18
  17. Tiwari G, Singh R, Singh N, Choudhury DR, Paliwal R, Kumar A, et al. Study of arbitrarily amplified (RAPD and ISSR) and gene targeted (SCoT and CBDP) markers for genetic diversity and population structure in Kalmegh [Andrographis paniculata (Burm. f.) Nees]. Industrial Crops and Products. 2016;86:1–11. https //doi.org/10.1016/j.indcrop.2016.02.025
  18. Kelly M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philosophical Transactions of the Royal Society B. 2019;374(1768):20180176. https //doi.org/10.1098/rstb.2018.0176
  19. Dasgupta N, Nandy P, Sengupta C, Das S. RAPD and ISSR marker mediated genetic polymorphism of two mangroves Bruguiera gymnorrhiza and Heritiera fomes from Indian Sundarbans in relation to their sustainability. Phys Mol Bio Plants. 2015;21:375–84. https //doi.org/10.1007/s12298-015-0300-7
  20. Pagnotta M, Mondini L, Noorani A. Plant genetic resources conservation and plant breeding. Plant Breeding Nova Publishers, New York; 2009. https //doi.org/10.7324/JABB.2020.80514
  21. Manjula K, Rajendran K, Eevera T, Kumaran S. Quantitative estimation of lupeol and stigmasterol in Costus igneus by high-performance thin-layer chromatography. J Liq Chrom Relat Technol. 2013;36(2):197–212. https //doi.org/10.1080/10826076.2012.684648
  22. Manjula K, Rajendran K, Eevera T, Kumaran S. Effect of Costus igneus stem extract on calcium oxalate urolithiasis in albino rats. Urological Research. 2012;40:499–510. https //doi.org/10.3109/00365599.2012.669792
  23. Bhat V, Asuti N, Kamat A, Sikarwar M, Patil M. Antidiabetic activity of insulin plant (Costus igneus) leaf extract in diabetic rats. Journal of Pharmacy Research. 2010;3(3):608–11. https //doi.org/10.5281/zenodo.12739414
  24. Sulakshana G, Rani AS. HPLC analysis of diosgenin in three species of Costus. Int J Pharm Sci Res. 2014;5(11):747–49. https //doi.org/10.5281/zenodo.11517707
  25. Pazhanichamy K, Bhuvaneswari K, Kunthavai B, Eevera T, Rajendran K. Isolation, characterization and quantification of diosgenin from Costus igneus. JPC-Journal of Planar Chromatography-Modern TLC. 2012;25(6):566–70. https//doi.org/10.1007/s12298-013-0205-3
  26. Kalailingam P, Kaliaperumal R, Shanmugam K, Tamilmani E, editors. In: Efficacy of methanolic extract of Costus igneus rhizome on hypoglycemic, hypolipidimic activity in streptozotocin (STZ) diabetic rats and HPTLC analysis of its active constituents. International Conference on Bioscience Biochemistry and Bioinformatics. 2011;(5):1866–73. http //doi.org/10.13040/IJPSR.0975-8232.7
  27. Urooj A. Nutrient profile and antioxidant components of Costus speciosus Sm. and Costus igneus Nak. 2010. https //www.academia.edu/82235371
  28. Majumdar M, Parihar PS. Antibacterial, antioxidant and antiglycation potential of Costus pictus from Southern region, India. Asian J Plant Sci Res. 2011. https //bit.ly/3UDKCuK
  29. Ponnanikajamideen M, Rajeshkumar S, Annadurai G. In vivo antidiabetic and in vitro antioxidant and antimicrobial activity of aqueous leaves extract of Chamaecostus cuspidatus. Res J Pharm Technol. 2016;9(8):1204–10. https //doi.org/10.5958/0974-360X.2016.00230.4
  30. Binny K, Kumar SG, Dennis T. Anti-inflammatory and antipyretic properties of the rhizome of Costus speciosus (koen.) sm. Journal of Basic and Clinical Pharmacy. 2010;1(3):177. https //www.jbclinpharm.org/
  31. Dhanasekaran S, Akshaya M, Preethi S. In vitro anti-proliferative potential of leaves of Costus igneus. Int Eng Technol. 2014;4(4):277–83. https //doi.org/10.5958/0974-360X.2020.00237.1
  32. Ekanem I, Antia B, Essien E, Thomas P. In vitro antioxidant activity and hypoglycemic efficacy of the leaf, stem and rhizome extracts of Costus igneus nak (costaceae) in alloxan induced diabetic rats. World. 2023;15(1):98–103. https //doi.org/10.4103/0973-7847.125536
  33. Arun N, Udhaya A, Rajagurua P. In vitro root induction and studies on antibacterial activity of root extract of Costus igneus on clinically important human pathogens. J Micro Biotech Res. 2011;1(4):67–76. https//www.academia.edu/1182420
  34. Sethumathi P, Nandhakumar J, Sengottuvelu S, Duraisamy R, Karthikeyan D, Ravikumar V, et al. Anti diabetic and antioxidant activity of methanolic leaf extracts of Costus pictus D. Don in alloxan induced diabetic rats. Pharmacology Online. 2009;1:1200–13. http//pharmacologyonline.silae.it
  35. Shivaprakash G, Thottacherry ED, Rai S, Nandini M, Kumarachandra R. Evaluation of antioxidant potential of Costus igneus in ethanol induced peroxidative damage in albino rats. J Appl Pharma Sci. 2014;4(8):052–55. https //doi.org/10.7324/JAPS.2014.40810.
  36. Vinotha V, Iswarya A, Thaya R, Govindarajan M, Alharbi NS, Kadaikunnan S, et al. Synthesis of ZnO nanoparticles using insulin-rich leaf extract anti-diabetic, antibiofilm and anti-oxidant properties. J Photochem Photobio Bio. 2019;197:111541. https //doi.org/10.1371/journal.pone.0289125
  37. Hardikar MR, Varma ME, Kulkarni AA, Kulkarni PP, Joshi BN. Elucidation of hypoglycemic action and toxicity studies of insulin-like protein from Costus igneus. Phytochemistry. 2016;124:99–107. https //doi.org/10.1016/j.phytochem.2016.01.017
  38. Radha A, Balasubramanian K, Shruti BS, Nandhini SR. Studies on optimization of medium in induction and regeneration of callus and shoot from Costus igneus and its phytochemical profile. J Acad Ind Res (JAIR). 2015;4(2):75. https //doi.org/ 10.5121/jair.2015.4207
  39. Liao Y, Li Z, Zhou Q, Sheng M, Qu Q, Shi Y, et al. Saponin surfactants used in drug delivery systems- A new application for natural medicine components. Int J Pharma. 2021;603:120709. https//doi.org/10.1016/j.ijpharm.2021.120709
  40. Cheok CY, Salman HAK, Sulaiman R. Extraction and quantification of saponins: A review. Food Research International. 2014;59:16–40. https //doi.org/10.1016/j.foodres.2014.01.057
  41. Kay KM, Reeves PA, Olmstead RG, Schemske DW. Rapid speciation and the evolution of hummingbird pollination in neotropical Costus subgenus Costus (Costaceae) evidence from nrDNA ITS and ETS sequences. American Journal of Botany. 2005;92(11):1899–910. https //doi.org/10.3732/ajb.92.11.1899
  42. Mohammadi SA, Prasanna B. Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Science. 2003;43(4):1235–48. https //doi.org/10.2135/cropsci2003.1235
  43. Schlötterer C. The evolution of molecular markers—just a matter of fashion?. Nature Reviews Genetics. 2004;5(1):63–69. https //doi.org/10.1007/s004120000089
  44. Spooner DM. Molecular markers for gene bank management. Bioversity International; 2005. https //cgspace.cgiar.org/server/api/core/bitstreams/e078f4e2-5b1f-4055-ae78-3dd98f94ed31/content
  45. Mandal AB, Thomas VA. RAPD pattern of Costus speciosus Koen ex. Retz., an important medicinal plant from the Andaman and Nicobar. Curr Sci. 2007;93(3):369–73. https//doi.org/10.3390/molecules17055050
  46. Marotti I, Bonetti A, Minelli M, Catizone P, Dinelli G. Characterization of some Italian common bean (Phaseolus vulgaris L.) landraces by RAPD, semi-random and ISSR molecular markers. Genet Resour Crop Evol. 2007;54:175–88. https //dx.doi.org/10.1007/s10722-005-3133-4
  47. Hung DT, Jamison TF, Schreiber SL. Understanding and controlling the cell cycle with natural products. Chem and Bio. 1996;3(8):623–39. https //doi.org/10.1016/s1074-5521(96)90129-5
  48. Nafisah L, Halimah E, Iskandar Y. Botanical and chemical overview, traditional uses and potential of anticancer activity from several Costus plants: A narrative review. Bioscientia Medi J Biomed Trans Res. 2022;6(9):2127–38. https //doi.org/10.37275/bsm.v6i9.561
  49. Kumudhavalli M, Jaykar B. Evaluation of antidiabetic activity of Costus igneus (L) leaves on STZ induced diabetic rats. 2012. http//www.pelagiaresearchlibrary.com/der-pharmacia-sinica/vol3-iss1/DPS-2012-3-1-1-4.pdf
  50. Krishnan K, Vijayalakshmi N, Helen A. Beneficial effects of Costus igneus and dose response studies in streptozotocin induced diabetic rats. Int J Curr Pharm Res. 2011;3(3):42-6. https //doi.org/10.22159/ijcpr.2011.v3i3.42
  51. Shetty A, Parampalli S, Bhandarkar R, Kotian S. Effect of the insulin plant (Costus igneus) leaves on blood glucose levels in diabetic patients: A cross-sectional study. J Clini Diag Res. 2010;4(3):2617–21. https//doi.org/10.7860/JCDR/2010/.766
  52. Krishnan K, Mathew LE, Vijayalakshmi N, Helen A. Anti-inflammatory potential of ?-amyrin, a triterpenoid isolated from Costus igneus. Inflammopharmacology. 2014;22:373–85. https //doi.org/10.1007/s10787-014-0220-y

Downloads

Download data is not yet available.