Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Anticarcinogenic properties of the desert truffle (Terfezia boudieri) and its host plant (Helianthemum aegyptiacum (L.) Mill.)

DOI
https://doi.org/10.14719/pst.5134
Submitted
18 September 2024
Published
11-02-2025
Versions

Abstract

This study aimed to investigate the phytochemicals and cytotoxic properties of aqueous extracts of desert truffle, Terfezia boudieri Chatin and its host plant Helianthemum aegyptiacum (L.) Mill. The chemical composition of truffle is relatively higher than its host plants. Carbohydrate content showed the highest rate, but crude lipid showed the lowest rate in truffle and the host plant. Potassium is the highest concentration macro-element, and iron is the highest concentration of micro-element in the truffle and host plant. Compared to the several extracts tested, ethyl acetate extracts of the desert truffle, T. boudieri and host plant H. aegyptiacum (L.) Mill. gave the highest cytotoxic activity against five tested cancer cell lines (the human eye carcinoma cell line MP38, the human central nervous system cell line SF-268, the colorectal carcinoma cell line HCT116, the prostate cancer cell line DU-145 and the breast cancer cell line MDA). The active substances of truffles are more effective than the active substances of host plants in terms of cell mortality rate and nuclear condensation of cancer cells. Human eye cancer cells MP38 treated with truffle ethyl acetate extract showed a greater cell mortality rate than those treated with host plant ethyl acetate extract. Thus, it could be concluded that desert truffles have distinctive metabolites with powerful biological activities, such as antiproliferative activities, compared to the host plant's corresponding metabolites.

References

  1. Kovács GM, Jakucs E, Bagi I. Identification of host plants and description of sclerotia of the truffle Mattirolomyces terfezioides. Mycol Progress. 2007;6:19-26. https://doi.org/10.1007/s11557-006-0520-y
  2. Gabr ME, El-Ghandour HA, Elabd SM. Prospective of the utilization of rainfall in coastal regions in the context of climatic changes: Case study of Egypt. Appl Water Sci. 2023;13:19. https://doi.org/10.1007/s13201-022-01835-9
  3. Read DJ, Kianmehr H, Malibari A. The biology of mycorrhiza in Helianthemum Mill. New Phytol. 1977;78(2):305-12. https://doi.org/10.1111/j.1469-8137.1977.tb04834.x
  4. Slama A, Fortas Z, Neffati M, Khabar L, Boudabous A. Étude taxinomique de quelques textitAscomycota hypogés (textitTerfeziaceae) de la Tunisie méridionale. Bulletin de la Société Mycologique de France. 2006;122(2-3):187–95.
  5. Kovács GM, Trappe JM. Nomenclatural history and genealogies of desert truffles. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A, editors. Desert truffles. Soil biology. Vol. 38. Berlin, Heidelberg: Springer; 2014. p. 9–19. https://doi.org/10.1007/978-3-642-40096-4_2
  6. Martín-Hernanz S, Albaladejo RG, Lavergne S, Rubio E, Grall A, Aparicio A. Biogeographic history and environmental niche evolution in the Palearctic genus Helianthemum (Cistaceae). Mol Phylogenetics Evol. 2021;163:107238. https://doi.org/10.1016/j.ympev.2021.107238
  7. Honrubia M, Cano A, Molina-Ninirola C. Hypogeous fungi from southern Spanish semiarid lands. Pers: Mol Phylogeny Evol Fungi. 1992;14(4): 647-53.
  8. Abdelsalam SM, El-Mokadem MT, Mekawey AAI, Sallam FEA, Sakr EAE. Characterization of bacterial-associated with Egyptian Tirmania nivea and Terfezia canariensis. Biocatal Agric Biotechnol. 2023;52:102804. https://doi.org/10.1016/j.bcab.2023.102804
  9. Morte MA, Honrubia M. Micropropagation of Helianthemum almeriense. In: Bajaj YPS, editor. High-tech and micropropagation VI. Biotechnology in agriculture and forestry. Vol. 40. Berlin, Heidelberg: Springer; 1997. p. 197–217. https://doi.org/10.1007/978-3-662-03354-8_12
  10. Okaiyeto K, Oguntibeju OO. African herbal medicines: Adverse effects and cytotoxic potentials with different therapeutic applications. Int J Environ Res Public Health. 2021;18(11):5988. https://doi.org/10.3390/ijerph18115988
  11. Lee H, Nam K, Zahra Z, Farooqi MQU. Potentials of truffles in nutritional and medicinal applications: A review. Fungal Biol Biotechnol. 2020;7:9. https://doi.org/10.1186/s40694-020-00097-x
  12. Patel S, Rauf A, Khan H, Khalid S, Mubarak MS. Potential health benefits of natural products derived from truffles: A review. Trends Food Sci Technol. 2017;70:1–8. https://doi.org/10.1016/j.tifs.2017.09.009
  13. Siegel R, Naishadham D, Jemal A. Cancer statistics for Hispanics/Latinos, 2012. CA Cancer J Clin. 2012;62(5):283-98. https://doi.org/10.3322/caac.21153
  14. Huang T, Gong WH, Li XC, Zou CP, Jiang GJ, Li XH, et al. Induction of apoptosis by a combination of paclitaxel and carboplatin in the presence of hyperthermia. Asian Pac J Cancer Prev. 2012;13(1):81-85. https://doi.org/10.7314/APJCP.2012.13.1.081
  15. Mans DRA, Rocha AB, Schwartsmann G. Anti-cancer drug discovery and development in Brazil: Targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncol. 2000;5(3):185-98. https://doi.org/10.1634/theoncologist.5-3-185
  16. Lam B, Baer A, Alaee M, Lefebvre B, Moser A, Williams A, et al. Major structural components in freshwater dissolved organic matter. Environ Sci Technol. 2007;41(24):8240-47. https://doi.org/10.1021/es0713072
  17. Susin SA, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis: Doubt no more. Biochim Biophys Acta - Bioenerg. 1998;1366(1-2):151-65. https://doi.org/10.1016/s0005-2728(98)00110-8
  18. Wong RS. Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87. https://doi.org/10.1186/1756-9966-30-87
  19. Kagan-Zur V, Turgeman T, Roth-Bejerano N, Morte A, Sitrit Y. Benefits conferred on plants. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A, editors. Desert truffles. Soil biology. Vol. 38. Berlin, Heidelberg: Springer; 2014. p. 157–70. https://doi.org/10.1007/978-3-642-40096-4_7
  20. Alhussaini MS, Saadabi AM, Hashim K, Al-Ghanayem AA. Efficacy of the desert truffle Terfezia claveryi to cure trachoma disease with special emphasis on its antibacterial bioactivity. Trends Med Res. 2016;11:28–34. https://dx.doi.org/10.3923/tmr.2016.28.34
  21. Skiest DJ, Vazquez JA, Anstead GM, Graybill JR, Reynes J, Ward D, et al. Posaconazole for the treatment of azole-refractory oropharyngeal and esophageal candidiasis in subjects with HIV infection. Clin Infect Dis. 2007;44(4):607-14. https://doi.org/10.1086/511039
  22. Aldebasi YH, Aly SM, Rahmani AH. Therapeutic implications of curcumin in the prevention of diabetic retinopathy via modulation of antioxidant activity and genetic pathways. Int J Physiol Pathophysiol Pharmacol. 2013;5(4):194-202.
  23. Stanikunaite R, Trappe JM, Khan SI, Ross SA. Evaluation of therapeutic activity of hypogeous ascomycetes and basidiomycetes from North America. Int J Med Mushrooms. 2007;9(1):7-14. https://doi.org/10.1615/IntJMedMushr.v9.i1.20
  24. Neggaz S, Fortas Z. Tests of antibiotic properties of Algerian desert truffle against bacteria and fungi. J Life Sci. 2013;7(3):259-66.
  25. Simão AA, Corrêa AD, de Carvalho TICL, Cesar PHS, de Moura Oliveira CH, Marcussi S. Pharmaco-toxic characterization of the aqueous extract from Pereskia grandifolia leaves. J Med Plants Res. 2015;9(7):216-22. https://doi.org/10.5897/JMPR2014.5647
  26. Latimer GW. Official Methods of Analysis of AOAC International. 22nd ed. Oxford:Oxford University Press; 2023. https://doi.org/10.1093/9780197610145.002.001
  27. Evans WC, Trease GE. Trease and Evans' Pharmacognosy. 13th ed. London: Baillière Tindall; 1989.
  28. Sivananth, Amutha S, Hemalatha G, Mini ML, Karthikeyan G. Bioactive components (polyphenols, flavonoids, total carotenoids, antioxidant activity) and proximate chemical composition of selected food processing industry by-products. Int J Curr Microbiol App Sci. 2017;6(7):4126-30. https://doi.org/10.20546/ijcmas.2017.607.427
  29. Yadav RNS, Agarwala M. Phytochemical analysis of some medicinal plants. J Phytol. 2011;3(12):10-14.
  30. Obadoni BO, Ochuko PO. Phytochemical studies and comparative efficacy of the crude extracts of some haemostatic plants in Edo and Delta states of Nigeria. Glob J Pure Appl Sci. 2002;8(2):203-08. https://doi.org/10.4314/gjpas.v8i2.16033
  31. Ibrahim AH, Al-Rawi SS, Majid AMSA, Ab Rahman NA, Abo-Salah KM, Ab Kadir MO. Separation and fractionation of Aquilaria malaccensis oil using supercritical fluid extraction and the cytotoxic properties of the extracted oil. Procedia Food Sci. 2011;1:1953–59. https://doi.org/10.1016/j.profoo.2011.09.287
  32. Li Q, Lu XH, Wang CD, Cai L, Lu JL, Wu JS, et al. Antiproliferative and apoptosis-inducing activity of schisandrin B against human glioma cells. Cancer Cell Int. 2015;15:12. https://doi.org/10.1186/s12935-015-0160-x
  33. Ibrahim AK, Kelly SJ, Adams CE, Glazebrook C. A systematic review of studies of depression prevalence in university students. J Psychiatr Res. 2013;47(3):391-400. https://doi.org/10.1016/j.jpsychires.2012.11.015
  34. SPSS Inc. SPSS Base 15.0 User’s Guide. Chicago (IL): SPSS Inc.; 2006. p. 191.
  35. Owaid MN, Muslim RF, Hamad HA. Mycosynthesis of silver nanoparticles using Terminia sp. desert truffle, Pezizaceae and their antibacterial activity. Jordan J Biol Sci. 2018;11(4):401-05.
  36. Hawkins HJ, Cargill RI, Van Nuland ME, Hagen SC, Field KJ, Sheldrake M, et al. Mycorrhizal mycelium as a global carbon pool. Curr Biol. 2023;33(11):R560-73. https://doi.org/10.1016/j.cub.2023.02.027
  37. Ahmed AA, Mohammed MA, Hami MA. Libyan truffles: Chemical composition and toxicity. J Food Sci. 1981;46(3):927-29. https://doi.org/10.1111/j.1365-2621.1981.tb15383.x
  38. Bouatia M, Touré HA, Cheikh A, Eljaoudi R, Rahali Y, Idrissi OMB, et al. Analysis of nutrient and antinutrient content of the truffle (Tirmania pinoyi) from Morocco. Inter Food Res J. 2018;25(1):174-78.
  39. Bitwell C, Indra SS, Luke C, Kakoma MK. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci Afr. 2023;19:e01585. https://doi.org/10.1016/j.sciaf.2023.e01585
  40. Hussain G, Al-Ruqaie IM. Occurrence, chemical composition and nutritional value of truffles: An overview. Pak J Biol Sci. 1999;2(2):510-14. https://doi.org/10.3923/pjbs.1999.510.514
  41. Saltarelli R, Ceccaroli P, Cesari P, Barbieri E, Stocchi V. Effect of storage on biochemical and microbiological parameters of edible truffle species. Food Chem. 2008;109(1):8-16. https://doi.org/10.1016/j.foodchem.2007.11.075
  42. Akyüz M. Nutritive value, flavonoid content and radical scavenging activity of the truffle (Terfezia boudieri Chatin). J Soil Sci Plant Nutr. 2013;13(1):143-51. http://dx.doi.org/10.4067/S0718-95162013005000013
  43. Bokhary HA, Suleiman AAA, Basalah MO, Parvez S. Chemical composition of desert truffles from Saudi Arabia. Can Inst Food Sci Technol J. 1987;20(5):336-41. https://doi.org/10.1016/S0315-5463(87)71328-5
  44. Crisan EV, Sands A. Nutritional value. In: Chang ST, Hayes WA, editors. The biology and cultivation of edible mushrooms. Amsterdam: Elsev; 1978. 137-68. https://doi.org/10.1016/B978-0-12-168050-3.50012-8
  45. Coskun M, Coskun S, Gök M. A new activity in Turkey’s agricultural forestry: Truffle mushroom cultivation. J Forests. 2017;4(1):1-7. https://doi.org/10.18488/journal.101/2017.4.1/101.1.1.7
  46. Al-Kaisey MT, Hadwan HA, Abeed HA, Taher EJ, Dhar BL. Proximate analysis of Iraqi truffles. Mush Res. 1996;5:105–08.
  47. Bokhary HA, Parvez S. Chemical composition of desert truffles Terfezia claveryi. J Food Compos Anal. 1993;6(3):285–93. https://doi.org/10.1006/jfca.1993.1031
  48. Mustafa AM, Angeloni S, Nzekoue FK, Abouelenein D, Sagratini G, Caprioli G, et al. An overview on truffle aroma and main volatile compounds. Mol. 2020;25(24):5948. https://doi.org/10.3390/molecules25245948
  49. Pacheco YM, López S, Bermúdez B, Abia R, Villar J, Muriana FJG. A meal rich in oleic acid beneficially modulates postprandial sICAM-1 and sVCAM-1 in normotensive and hypertensive hypertriglyceridemic subjects. J Nutr Biochem. 2008;19(3):200–05. https://doi.org/10.1016/j.jnutbio.2007.03.002
  50. Mouffouk S, Mouffouk C, Mouffouk S, Haba H. Medicinal, pharmacological and biochemical progress on the study of genus Helianthemum: A review. Curr Chem Biol. 2023;17(3):147-59. https://doi.org/10.2174/2212796817666230227112835
  51. Zaghlul AA, Hamad HM, Rashad A, El_gawad AA, Alardan D, Alshammari A, et al. Antioxidant properties and chemical composition of white truffle Tirmania nivea and its host plant Helianthemum lippii. Notu Bota Hort Agro Cluj-Napo. 2024;52(4):14176-76. https://doi.org/10.15835/nbha52414176
  52. Canga I, Vita P, Oliveira AI, Castro MÁ, Pinho C. In vitro cytotoxic activity of African plants: A review. Mol. 2022;27(15):4989. https://doi.org/10.3390/molecules27154989
  53. Leonti M, Stafford IG, Cero MD, Cabras S, Castellanos ME, Casu L, et al. Reverse ethnopharmacology and drug discovery. J Ethnopharmacol. 2020;198:417-31. https://doi.org/10.1016/j.jep.2016.12.044
  54. Sawaya K, Najem AS, Khawaja G, Khalil M. Proapoptotic and antiproliferative effects of the desert truffle Terfezia boudieri on colon cancer cell lines. Evid-based Complement Altern Med. 2023;2023(1):1693332. https://doi.org/10.1155/2023/1693332
  55. Dahham SS, Al-Rawi SS, Ibrahim AH, Majid ASA, Majid AMSA. Antioxidant, anticancer, apoptosis properties and chemical composition of black truffle Terfezia claveryi. Saudi J Biol Sci. 2018;25(8):1524-34. https://doi.org/10.1016/j.sjbs.2016.01.031
  56. Obaid AS, Hassan KT, Hassan OM, Ali HH, Ibraheem IJ, Salih TA, et al. In-vitro antibacterial, cytotoxicity and anti-prostate cancer effects of gold nanoparticles synthesized using extract of desert truffles (Tirmania nivea). Mater Chem Phys. 2023;301:127673. https://doi.org/10.1016/j.matchemphys.2023.127673
  57. Sawaya K, Khalil M, Khawaja G. T. boudieri extract potentiates the effects of capecitabine treatment in human colon cancer cells. BAU J Sci Technol. 2024;5(2):10. https://doi.org/10.54729/2959-331X.1133

Downloads

Download data is not yet available.