Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Physico-chemical properties of spray dried anthocyanin extract from hibiscus flowers (Hibiscus rosasinensis L.) as food colourant

DOI
https://doi.org/10.14719/pst.5169
Submitted
20 September 2024
Published
23-04-2025
Versions

Abstract

Flowers are a rich source of bio-pigments like carotenoids, anthocyanins and betalains. Among these, anthocyanins are the most abundant pigments and Hibiscus flowers are one source of anthocyanin pigments. The major drawback in using hibiscus anthocyanins as a food colourant is their stability. Hence, to enhance stability, microencapsulation of aqueous extract of hibiscus petals was attempted with maltodextrin encapsulation at different TSS levels and temperatures and the physico-chemical and functional properties of spray dried hibiscus powder were assessed. Microencapsulation of anthocyanin extract with maltodextrin at 15° brix and 180 °C resulted in the highest dried powder recovery (17.85%), anthocyanin content (64.81 c3g eq.mg/L) and water solubility (99.58%). Physical properties like bulk density (0.593 g/m3) and tapped density (0.695 g/m3), was significantly higher in spray dried hibiscus powder obtained with maltodextrin 20 °brix at 170 °C. Based on Hausner’s ratio (1.16), Carr index (14.04) and hygroscopicity (17.85%), hibiscus spray dried powder exhibited good flowability when dried with maltodextrin 15 °brix at 180 °C. Chromometer values of spray dried encapsulation with maltodextrin 15 °brix at 180 °C proved a deep red shade with more darkness (L*38.5) and (a* 23.50 and b* -0.67) when compared to other treatments. The spray dried powder also exhibited significant colour stability when used as food colourant in aonla juice, lemon juice, curd and butter cream. This study explored the potential of spray-dried anthocyanin extract from hibiscus flowers as a bio-colourant in the food industry.

References

  1. Obi FO, Usenu IA, Osayande JO. Prevention of carbon tetrachloride-induced hepatotoxicity in the rat by Hibiscus rosasinensis anthocyanin extract administered in ethanol. Toxicol. 1998;131(2-3):93-98. https://doi.org/10.1016/S0300-483X(98)00119-X
  2. Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients and the potential health benefits. Food and Nutri Res. 2017;61(1):1361779. https://doi.org/10.1080/16546628.2017.1361779
  3. Lowry J. Floral anthocyanins of some Malesian Hibiscus species. Phytochem. 1976;15(9):1395-96. https://doi.org/10.1016/S0031-9422(00)97124-3
  4. Giusti MM, Wrolstad RE. Acylated anthocyanins from edible sources and their applications in food systems. Biochem Engineer J. 2003;14(3):217-25. https://doi.org/10.1016/S1369-703X(02)00221-8
  5. Chegini G, Ghobadian B. Effect of spray-drying conditions on physical properties of orange juice powder. Drying Technol. 2005;23(3):657-68. https://doi.org/10.1081/DRT-200054161
  6. Grabowski J, Truong VD, Daubert C. Spray-drying of amylase hydrolyzed sweetpotato puree and physicochemical properties of powder. J Food Sci. 2006;71(5):209-17. https://doi.org/10.1111/j.1750-3841.2006.00036.x
  7. Carr RL. Evaluating flow properties of solids. Chemical Engineer. 1965;18:163-68.
  8. Hayes TD, Isaacson HR, Reddy KR, Chynoweth DF, Biljetina R. Water hyacinth systems for water treatment. In: Reddy KR, Smith WH, (Eds.). Aquatic plants for wastewater treatment and resource recovery; 1987.121-40.
  9. Tze NL, Han CP, Yusof YA, Ling CN, Talib RA, Taip FS, Aziz MG. Physicochemical and nutritional properties of spray-dried pitaya fruit powder as natural colorant. Food Sci Biotechnol. 2012;21(3):675-82. https://doi.org/10.1007/s10068-012-0088-z
  10. Lebrun PF, Krier J, Mantanus H, Grohganz M, Yang E, Rozet B, et al. Design space approach in the optimization of the spray-drying process. European J Pharma and Biopharma. 2012;80(1):226-34. https://doi.org/10.1016/j.ejpb.2011.09.014
  11. Cai YZ, Corke H. Production and properties of spray-dried Amaranthus betacyanin pigments. J Food Sci. 2000;65(7):1248-52. https://doi.org/10.1111/j.1365-2621.2000.tb10273.x
  12. Lee J, Durst RW, Wrolstad RE, Kupina JD. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants and wines by the pH differential method: collaborative study. J AOAC Intern. 2005;88(5):1269-78. https://doi.org/10.1093/jaoac/88.5.1269
  13. Shrestha AK, Ua-Arak T, Adhikari BP, Howes T, Bhandari BR. Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). Int J Food Prop. 2007;10(3):661-73. https://doi.org/10.1080/10942910601109218
  14. Shishir MRI, Taip FS, Aziz NA, Talib RA, Sarker MSH. Optimization of spray drying parameters for pink guava powder using RSM. Food Sci Biotechnol. 2016;25(2):461-68. https://doi.org/10.1007/s10068-016-0064-0
  15. Al-Kahtani HA, Hassan BH. Spray drying of roselle (Hibiscus sabdariffa L.) extract. J Food Sci. 1990;55(4):1073-76. https://doi.org/10.1111/j.1365-2621.1990.tb01601.x
  16. Papadakis SE, Gardeli C, Tzia C. Spray drying of raisin juice concentrate. Drying Technol. 2006;24(2):173-80. https://doi.org/10.1080/07373930600559019
  17. Fazaeli M, Emam-Djomeh Z, Yarmand MS. Influence of black mulberry juice addition and spray drying conditions on some physical properties of ice cream powder. Int J Food Eng. 2016;3:277-85. https://doi.org/10.1515/ijfe-2015-0253
  18. Hogekamp S, Schubert H. Rehydration of food powders. Food Sci Technol Int. 2003;9(3):223-35. https://doi.org/10.1177/1082013203034938
  19. Phoungchandang S, Sertwasana A. Spray-drying of ginger juice and physicochemical properties of ginger powders. Sci Asia. 2010;36(1):40-45.
  20. Izidoro DR, Sierakowski MR, Haminiuk CWI, De Souza CF,de Paula Scheer A. Physical and chemical properties of ultrasonically, spray-dried green banana (Musa cavendish) starch. J Food Eng. 2011;104(4):639-48. https://doi.org/10.1016/j.jfoodeng.2011.02.002
  21. Archaina DF, Vasile J, Jiménez-Guzmán L, Alamilla-Beltrán, Schebor C. Physical and functional properties of roselle (Hibiscus sabdariffa L.) extract spray dried with maltodextrin-gum arabic mixtures. J Food Process Preserv. 2019;43(9):14065. https://doi.org/10.1111/jfpp.14065
  22. Sarraguça MC, Cruz AV, Soares SO, Amaral HR, Costa PC, Lopes JA. Determination of flow properties of pharmaceutical powders by near infrared spectroscopy. J Pharma Biomed Anal. 2010;52(4):484-92. https://doi.org/10.1016/j.jpba.2010.01.038
  23. Walton D. The morphology of spray-dried particles a qualitative view. Drying Technol. 2000;18(9):1943-86. https://doi.org/10.1080/07373930008917822
  24. Gagneten MR, Corfield MG, Mattson A, Sozzi G, Leiva D, Salvatori, Schebor C. Spray-dried powders from berries extracts obtained upon several processing steps to improve the bioactive components content. Powder Technol. 2019;342:1008-15. https://doi.org/10.1016/j.powtec.2018.09.048
  25. Jinapong N, Suphantharika M, Jamnong P. Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. J Food Eng. 2008;84(2):194-205. https://doi.org/10.1016/j.jfoodeng.2007.04.032
  26. Santhalakshmy S, Bosco SJD, Francis S, Sabeena M. Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology. 2015;274:37-43. https://doi.org/10.1016/j.powtec.2015.01.016
  27. Patil V, Chauhan AK, Singh RP. Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technol. 2014;253:230-36. https://doi.org/10.1016/j.powtec.2013.11.033
  28. Truong V, Bhandari BR, Howes T. Optimization of co-current spray drying process of sugar-rich foods. Part I-Moisture and glass transition temperature profile during drying. J Food Eng. 2005;71(1):55-65. https://doi.org/10.1016/j.jfoodeng.2004.10.017
  29. Tonon RV, Freitas SS, Hubinger MD. Spray drying of açai (Euterpe oleraceae Mart.) juice:effect of inlet air temperature and type of carrier agent. J Food Process Preserv. 2011;35(5):691-700. https://doi.org/10.1111/j.1745-4549.2011.00518.x
  30. Brouillard R. Chemical structure of anthocyanins. Anthocyanins as food colors; 1982.1-40. https://doi.org/10.1016/B978-0-12-472550-8.50005-6
  31. Ersus S, Yurdagel U. Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J Food Eng. 2007;80(3):805-12. https://doi.org/10.1016/j.jfoodeng.2006.07.009
  32. Bazaria B, Kumar P. Effect of whey protein concentrate as drying aid and drying parameters on physicochemical and functional properties of spray dried beetroot juice concentrate. Food Biosci. 2016;14:21-27. https://doi.org/10.1016/j.fbio.2015.11.002 4
  33. Fang Z, Bhandari B. Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Res Int. 2012;48(2):478-83. https://doi.org/10.1016/j.foodres.2012.05.025
  34. Main J, Clydesdale F, Francis F. Spray drying anthocyanin concentrates for use as food colorants. J Food Sci. 1978;43(6):1693-94. https://doi.org/10.1111/j.1365-2621.1978.tb07390.x
  35. Shi J, Le Maguer M, Kakuda Y, Liptay A, Niekamp F. Lycopene degradation and isomerization in tomato dehydration. Food Res Int. 1999;32(1):15-21. https://doi.org/10.1016/S0963-9969(99)00059-9
  36. Gay J, Campos F, Oliveira V, Borges S, Francisoni A, Pereira D. Physical properties of passion fruit juice powder 1: Effect of atomization rate and maltodextrin concentration. Alimentaria: J Food Technol Hyg. 2003;(346):97-100.
  37. Wahyuningsih S, Wulandari L, Wartono W, Munawaroh H, Ramelan A. The effect of pH and color stability of anthocyanin on food colorant. IOP Conference Series: Mater Sci Eng; 2017. 193(1):012047. https://doi.org/10.1088/1757- 899X/193/1/012047

Downloads

Download data is not yet available.