Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Phytochemical analysis of Polyalthia sclerophylla twigs utilizing classical techniques and GC-MS: Evaluation of cytotoxic and antibacterial properties

DOI
https://doi.org/10.14719/pst.5381
Submitted
30 September 2024
Published
24-09-2025 — Updated on 16-10-2025
Versions

Abstract

The primary objective of the present investigation is to extract compounds from Polyalthia sclerophylla twigs (abbreviated as EPST) and subsequently analyze their chemical constituents using GS-MS and conventional phytochemical methods. The bio-medical properties of EPST were assessed by the evaluation of its antibacterial and cytotoxicity activities. In this study, three distinct solvents were used for the purpose of extracting EPST, resulting in the production of three distinct samples, namely Methanol-EPST (M-EPST), Dichloromethane- EPST (D-EPST) and Hexane-EPST (H-EPST). The phytochemical analysis identified glycosides and terpenoids in all examined specimens. Nevertheless, alkaloids were not present in all of them. The gas chromatography-mass spectrometry (GC-MS)
analysis revealed the presence of a total of twelve organic components. Higher percentages of Benzene, 1,3-bis(3-phenoxyphenoxy), furfural, and phenol were detected, but lower levels were identified for Azetidine and Pyridine, 2-fluoro-. The EPST cytotoxicity evaluation was conducted using the Alamar blue test with MG-63 cells. Nevertheless, the findings indicate that no negative impact was observed at any dose level since the availability of cells increased. M-EPST, D-EPST, and H-EPST were subjected to experimentation involving six bacterial pathogens. The results of this study demonstrated that all three compounds had substantial efficacy in inhibiting the development of these bacteria. The methanol extract (M-EPST) exhibited greater efficacy in suppressing bacterial growth
than the D-EPST and H-EPST extracts. The current investigation has provided evidence that crude PST exhibits a wide range of chemical compositions, resulting in notable chemical, biomedical, and biological features and a lack of toxicity.

References

  1. 1. Firdous SM, Ahmed SN, Hossain SM, Ganguli S, Fayed MA. Polyalthia longifolia: phytochemistry, ethnomedicinal importance, nutritive value and pharmacological activities review. Med Chem Res. 2022;31(8):1252–64. https://doi.org/10.1007/s00044-022-02827-w
  2. 2. Dashora A, Rathore K, Raj S, Sharma K. Synthesis of silver nanoparticles employing Polyalthia longifolia leaf extract and their in vitro antifungal activity against phytopathogen. Biochem Biophys Rep. 2022;31:101320. https://doi.org/
  3. 10.1016/j.bbrep.2022.101320
  4. 3. Kolaprath MK, Benny L, Varghese A. A facile, green synthesis of carbon quantum dots from Polyalthia longifolia and its application for the selective detection of cadmium. Dyes Pigm. 2023;210:111048. https://doi.org/10.1016/j.dyepig.2023.111048
  5. 4. Annapureddy PK, Kishore N. Non-isothermal pyrolysis of Polyalthia longifolia using thermogravimetric analyzer: Kinetics and thermodynamics. J Renew Sustain Energy. 2023;15(5). https://doi.org/10.1063/5.0135504
  6. 5. Ghous M, Dogar NA, Hanif A, Jabbar M. Phytochemical analysis and antioxidant potential of ethanolic extract of Polyalthia longifolia leaves. Pak J Sci. 2023;75(2):434–38. https://doi.org/10.17582/journal.pjs.2023.75.2.434.438
  7. 6. Zhangxin Y, Xinming S, Yuan Y, Jun Y, Shuo Y, Xiaobao L. Anti-inflammatory clerodane diterpenoids from Polyalthia longifolia. Chin J Organic Chem. 2023;43(2):751. https://doi.org/10.6023/cjoc202201054
  8. 7. Siddappa RY, Rao ASJ, Usha BM, Verma B, Mahadevappa P. Anti-proliferative activity of labdane diterpenes isolated from Polyalthia cerasoides and their molecular interaction studies. Curr Drug Discov Technol. 2022;19(5):78–85. https://doi.org/10.2174/157016381966622121609113
  9. 8. Zareen S, Adnan M, Khan SN, Alotaibi A. Anti-plasmodial potential of selected medicinal plants and a compound atropine isolated from Eucalyptus obliqua. Open Chem. 2023;21(1):20220281. https://doi.org/10.1515/chem-2022-
  10. 0281
  11. 9. Maulana I, Fasya D, Ginting B. Biosynthesis of Cu nanoparticles using Polyalthia longifolia roots extracts for antibacterial, antioxidant and cytotoxicity applications. Materials Technol. 2022;37(13):2517–21. https://doi.org/10.
  12. 1080/10667857.2022.2036582
  13. 10. Lo IW, Liao GY, Lee JC, Chang CI, Wu YC, Chen YY, et al. Novel aporphine- and proaporphine–clerodane hybrids identified from the barks of Taiwanese Polyalthia longifolia (Sonn.) Thwaites with strong anti-DENV2 activity. Pharmaceuticals. 2022;15(10):1218. https://doi.org/10.3390/ph15101218
  14. 11. Mudhafar M, Zainol I. Medical values, antimicrobial and antifungal activities of Polyalthia genus. Int J Pharm Res. 2019;11(1). https://doi.org/10.31838/ijpr/2019.11.01.31
  15. 12. Shinde PK, Kokate RH, Gawade GS. Physicochemical, phytochemical, biological and chromatographic evaluation of Polyalthia longifolia plant leaves – A review. Res J Sci Technol. 2023;15(1):41–48. https://doi.org/10.1016/j.rjst.
  16. 2023.02.004
  17. 13. Alsailawi HA, Mudhafar M, Hanan AH, Ayat SS, Dhahi SJ, Ruaa KM, et al. Phytochemical screening and antibacterial activities of Antiaris toxicaria stem, Polyalthia rumphii leaves and Polyalthia bullata stem extracts. AIP Conf Proc. 2023;2845(1):020007. https://doi. org/10.1063/5.0015602
  18. 14. Bhatt B, Chaurasia H, Singh R, Kaushik S. Phytochemical profile and in vitro sun-protective activity of Polyalthia longifolia (Sonn.) Thwaites bark extracts. In: Trop J Nat Prod Res. 2022;6(8):1174‒77. https://doi.org/10.1002/tjn.2022.
  19. 12812
  20. 15. Amin R, Quispe C, Herrera-Bravo J, Rahman MM, Novakovic R, Daştan SD, et al. Ethnopharmacological-based validation of Polyalthia suberosa leaf extract in neurological, hyperalgesic and hyperactive gut disorders using animal models. J Evid Based Complementary Altern Med. 2022;17:2022. https://doi.org/10.1155/2022/508467
  21. 16. Baqir S. Exploration of antimicrobial activities of an ethnobotanically important tree Terminalia arjuna of family Combretaceae. GU J Phytosci. 2022;2(4):228–34. https://doi.org/10.47347/gujps/2022.02.04.002
  22. 17. Parusnath M, Naidoo Y, Singh M, Rihan H, Dewir YH. Phytochemical composition of Combretum molle (R. Br. ex G. Don.) Engl. & Diels leaf and stem extracts. Plants. 2023;12(8):1702. https://doi.org/10.3390/plants12081702
  23. 18. Iyekowa O, Uwumarongie OH, Emmanuel KC, Omoagbotse PI, Okhions SO, Izuegbunam CL, et al. Phytoconstituents, acute toxicity and in-vivo anti-anxiety activity of chloroform and ethyl acetate extracts of Datura stramonium in Balb/C mice. J Sci Technol Res. 2023;5(1):158–70. https://doi.org/10.21276/jstr.2023.5.1.18
  24. 19. Shree TJ, Poompavai S, Begum SM, Gowrisree V, Hemalatha S. Cancer-fighting phytochemicals: another look. J Nanomedicine Biotherapeutic Discov. 2019;8:162. https://doi.org/10.2174/2379172208666190220103004
  25. 20. Rathore SK, Bhatt SH, Dhyani S, Jain A. Preliminary phytochemical screening of medicinal plant Ziziphus mauritiana Lam. fruits. Int J Curr Pharm Res. 2012;4(3):160–62. https://doi.org/10.14419/ijcpr.v4i3.7195
  26. 21. Shaikh JR, Patil MK. Qualitative tests for preliminary phytochemical screening: an overview. Int J Chem Stud. 2020;8(2):603–08. https://doi.org/10.22271/chem.2020.v8.i2d.9395
  27. 22. Ahmed M, Ji M, Qin P, Gu Z, Liu Y, Sikandar A, et al. Phytochemical screening, total phenolic and flavonoids contents and antioxidant activities of Citrullus colocynthis L. and Cannabis sativa L. Appl Ecol Environ Res. 2019;17:6961–79. https://doi.org/10.15666/aeer/1703_696179
  28. 23. Hossain MA, AL-Raqmi KA, Al-Mijizy ZH, Weli AM, Al-Riyami Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac J Trop Biomed. 2013;3(9):705–10. https://doi.org/10.1016/S2221-1691(13)60126-7
  29. 24. Kujur RS, Singh V, Ram M, Yadava HN, Singh KK, Kumari S, et al. Antidiabetic activity and phytochemical screening of crude extract of Stevia rebaudiana in alloxan-induced diabetic rats. Pharmacogn Res. 2010;2(4):258. https://doi.org/10.4103/0974-8490.72213
  30. 25. Kaur H, Amini MH, Prabhakar PK, Singh A, Suttee A. Phytochemical screening and antimicrobial activity of Caesalpinia sappan L. leaves. Int J Pharmacogn Phytochem Res. 2016;8(6):1040–45. https://doi.org/10.25258/ijppsr.v8i6.10184
  31. 26. Maskam NA, Hassan HHM, Nor MM, Ravi NHM. Phytochemicals screening and antioxidant activity of three different solvent extracts of Euodia redleyi leaves. Mod Agric Sci Technol. 2017;3:18–21. https://doi.org/10.11648/j.mas.20170304.11
  32. 27. Arzumand Ara M, Saleh-e-In M, Ahmed NU, Ahmed M, Abul M. Phytochemical screening, analgesic, antimicrobial and antioxidant activities of bark extracts of Adenanthera pavonina L. (Fabaceae). Adv Nat Appl Sci. 2010;4(3):352–60. https://doi.org/10.22587/anats. 2010.4.3.6
  33. 28. Alabri TH, Al Musalami AH, Hossain MA, Weli AM, Al-Riyami Q. Comparative study of phytochemical screening, antioxidant and antimicrobial capacities of fresh and dry leaves crude plant extracts of Datura metel L. J King Saud Univ Sci. 2014;26(3):237–43. https://doi.org/10.1016/j.jksus.2013.06.001
  34. 29. Dhawan D, Gupta J. Comparison of different solvents for phytochemical extraction potential from Datura metel plant leaves. Int J Biol Chem. 2017;11(1):17–22. https://doi.org/10.9735/ijbc.2017.11.1.2
  35. 30. Hemagirri M, Sasidharan S. In vitro antiaging activity of polyphenol-rich Polyalthia longifolia (Annonaceae) leaf extract in Saccharomyces cerevisiae BY611 yeast cells. J Ethnopharmacol. 2022;290:115110. https://doi.org/10.1016/j.jep.2022.115110
  36. 31. Vinay K. Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compound. J Med Plants Res. 2011;5(32):7043–48. https://doi.org/10.5897/JMPR11.239
  37. 32. Akinsulire OR, Aibin IE, Adenipekun T, Adelowotan T, Odugbemi T. In vitro antimicrobial activity of crude extracts from plants Bryophyllum pinnatum and Kalanchoe crenata. Afr J Tradit Complement Altern Med. 2007;4(3):338–44. https://doi.org/10.4314/ajtcam.v4i3.31426

Downloads

Download data is not yet available.