Research Articles
Vol. 12 No. 2 (2025)
Exploring the therapeutic potential of sesamol and daidzein in polycystic ovarian syndrome: An in-silico approach
Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy 680 651, India
Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy 680 651, India
Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy 680 651, India
Abstract
Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder in women, characterized by hormonal imbalances, including elevated androgen levels. In the search for potential therapeutic agents, phytocompounds such as Sesamol and Daidzein have gained attention due to their antioxidant and oestrogenic properties. This study investigated the binding affinity and pharmacokinetic properties of Sesamol and Daidzein as potential treatments for PCOS through molecular docking and in silico analysis. Molecular docking studies were conducted using AutoDock Vina, targeting oestrogen receptor beta (ER?), androgen receptor (AR) and aromatase (CYP19A1) as key macromolecules involved in PCOS pathophysiology. The docking results revealed significant binding affinities, with Daidzein showing a binding energy of -8.9 kcal/mol to ER?, -5.2 kcal/mol to AR and -9.2 kcal/mol to CYP19A1. Sesamol exhibited binding energies of -5.9 kcal/mol to both ER? and AR and -5.8 kcal/mol to CYP19A1. These values, although lower than the respective endogenous ligands (Oestradiol: -11.0 kcal/mol, Testosterone: -12.0 kcal/mol and - 11.3 kcal/mol), indicate a favorable interaction with the target receptors. Additionally, pharmacokinetic properties, including absorption, distribution, metabolism, excretion and toxicity (ADMET), were analyzed using SwissADME and AdmetSAR tools. The analysis demonstrated favorable drug-likeness and ADMET profiles for both sesamol and daidzein, reinforcing their suitability as therapeutic candidates. The findings from this study suggested that sesamol and daidzein possess promising pharmacological profiles and could be considered for further in vivoand clinical studies as potential therapeutic agents for managing PCOS.
References
- 1. Stener-Victorin E, Teede H, Norman RJ, Legro R, Goodarzi MO, Dokras A, et al. Polycystic ovary syndrome. Nat Rev Dis Prim. 2024;10(1):27. https://doi.org/10.1038/s41572-024-00511-3
- 2. Asghari MK, Nejadghaderi SA, Alizadeh M, Sanaie S, Sullman MJ, Kolahi AA, et al. Burden of polycystic ovary syndrome in the Middle East and North Africa region, 1990–2019. Sci Rep. 2022;12(1):7039. https://doi.org/
- 10.1038/s41598-022-11006-0
- 3. Singh S, Pal N, Shubham S, Sarma DK, Verma V, Marotta F, Kumar M. Polycystic ovary syndrome: etiology, current management and future therapeutics. J Clin Med. 2023;12(4):1454. https://doi.org/10.3390/jcm12041454
- 4. Bai H, Ding H, Wang M. Polycystic Ovary Syndrome (PCOS): Symptoms, Causes and Treatment. Clin Exp Obstet Gynecol. 2024;51(5):126. https://doi.org/10.31083/j.ceog5105126
- 5. Roghani M, Mahdavi VMR, Jalali?Nadoushan MR, Baluchnejadmojarad T, Naderi G, Roghani?Dehkordi F, et al. Chronic administration of daidzein, a soybean isoflavone, improves endothelial dysfunction and attenuates oxidative stress in streptozotocin?induced diabetic rats. Phyther Res. 2013;27(1):112–17. https://doi.org/10.1002/ptr.4699
- 6. Márquez-Flores YK, Martínez-Galero E, Correa-Basurto J, Sixto-López Y, Villegas I, Rosillo MÁ, et al. Daidzein and Equol: Ex vivo and in silico approaches targeting COX-2, iNOS and the canonical inflammasome signaling pathway. Pharmaceuticals. 2024;17(5):647. https://doi.org/10.3390/ph17050647
- 7. Yashaswini PS, Rao AGA, Singh SA. Inhibition of lipoxygenase by sesamol corroborates its potential anti-inflammatory activity. Int J Biol Macromol. 2017;94:781–87. https://doi.org/10.1016/j.ijbiomac.2016.06.048
- 8. Huggins DJ, Sherman W, Tidor B. Rational approaches to improving selectivity in drug design. J Med Chem. 2012;55(4):1424–44. https://doi.org/10.1021/jm2010332
- 9. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31(2):455–61. https://doi.org/10.1002/jcc.21334
- 10. Drummond AE, Findlay JK. The role of estrogen in folliculogenesis. Mol Cell Endocrinol. 1999;151(1–2):57–64. https://doi.org/10.1016/S0303-7207(99)00038-6
- 11. Xu XL, Huang ZY, Yu K, Li J, Fu XW, Deng SL. Estrogen biosynthesis and signal transduction in ovarian disease. Front Endocrinol (Lausanne). 2022;13:827032. https://doi.org/10.3389/fendo.2022.827032
- 12. Yu K, Huang ZY, Xu XL, Li J, Fu XW, Deng SL. Estrogen receptor function: impact on the human endometrium. Front Endocrinol (Lausanne). 2022;13:827724. https://doi.org/10.3389/fendo.2022.827724
- 13. Yang H, Lee SY, Lee SR, Pyun BJ, Kim HJ, Lee YH, et al. Therapeutic effect of Ecklonia cava extract in letrozole-induced polycystic ovary syndrome rats. Front Pharmacol. 2018;9:1325. https://doi.org/10.3389/fphar.2018.01325
- 14. Xu XL, Deng SL, Lian ZX, Yu K. Estrogen receptors in polycystic ovary syndrome. Cells. 2021;10(2):459. https://doi.org/10.3390/cells10020459
- 15. Ye W, Xie T, Song Y, Zhou L. The role of androgen and its related signals in PCOS. J Cell Mol Med. 2021;25(4):1825–37. https://doi.org/10.1111/jcmm.16205
- 16. Hong Y, Li H, Yuan Y, Chen S. Molecular characterization of aromatase. Ann N Y Acad Sci. 2009;1155(1):112–20. https://doi.org/10.1111/j.1749-6632.2009.03703.x
- 17. Panghiyangani R, Soeharso P, Suryandari DA, Wiweko B, Kurniati M, Pujianto DA. CYP19A1 gene expression in patients with polycystic ovarian syndrome. J Hum Reprod Sci. 2020;13(2):100–03. https://doi.org/10.4103/jhrs.JHRS_
- 142_18
- 18. Narayana S, Ananad C, Kumari NS, Sonkusere S, Babu SVS. Impact of Aromatase enzyme and its altered regulation on Polycystic Ovary Syndrome (PCOS): A key factor in pathogenesis of PCOS. Indian J Med Spec. 2023;14(4):206–11. https://doi.org/10.4103/injms.injms_52_23
- 19. Kandasamy V, Sathish S, Madhavan T, Balasundaram U. In-silico screening of phytochemical compounds in Caesalpinia bonducella L. seeds against the gene targets of ovarian steroidogenesis pathway. J Microbiol Biotechnol food Sci. 2023;13(2):e6124–e6124. https://doi.org/10.55251/jmbfs.6124
- 20. Priyanka CL, Premkumar B. Exploring the therapeutic potential of phytoconstituents in treatment of polycystic ovarian syndrome: An in-silico study. https://doi.org/10.18231/j.ijpp.2023.020
- 21. Lizcano F. Roles of estrogens, estrogen-like compounds and endocrine disruptors in adipocytes. Front Endocrinol (Lausanne). 2022;13:921504. https://doi.org/10.3389/fendo.2022.921504
- 22. Khorchani MJ, Zal F, Neisy A. The phytoestrogen, quercetin, in serum, uterus and ovary as a potential treatment for dehydroepiandrosterone-induced polycystic ovary syndrome in the rat. Reprod Fertil Dev. 2020;32(3):313–21. https://doi.org/10.1071/RD19072
- 23. Deligeoroglou E, Vrachnis N, Athanasopoulos N, Iliodromiti Z, Sifakis S, Iliodromiti S, et al. Mediators of chronic inflammation in polycystic ovarian syndrome. Gynecol Endocrinol. 2012;28(12):974–78. https://doi.org/10.3109/
- 09513590.2012.683082
- 24. Ojeda-Ojeda M, Murri M, Insenser M, F Escobar-Morreale H. Mediators of low-grade chronic inflammation in polycystic ovary syndrome (PCOS). Curr Pharm Des. 2013;19(32):5775–91. https://doi.org/10.2174/1381612811319
- 320012
- 25. Miadoková E. Isoflavonoids—An overview of their biological activities and potential health benefits. Interdiscip Toxicol. 2009;2(4):211–18. https://doi.org/10.2478/v10102-009-0021-3
- 26. Chen J, Chang H. By modulating androgen receptor coactivators, daidzein may act as a phytoandrogen. Prostate. 2007;67(5):457–62. https://doi.org/10.1002/pros.20470
- 27. Singh S, Grewal S, Sharma N, Behl T, Gupta S, Anwer MK, et al. Unveiling the pharmacological and nanotechnological facets of daidzein: Present state-of-the-art and future perspectives. Molecules. 2023;28(4):1765.
- https://doi.org/10.3390/molecules28041765
- 28. Talebi A, Hayat P, Ghanbari A, Ardekanian M, Zarbakhsh S. Sesamol protects the function and structure of rat ovaries against side effects of cyclophosphamide by decreasing oxidative stress and apoptosis. J Obstet Gynaecol Res. 2022;48(7):1786–94. https://doi.org/10.1111/jog.15315
- 29. Bosebabu B, Cheruku SP, Chamallamudi MR, Nampoothiri M, Shenoy RR, Nandakumar K, et al. An appraisal of current pharmacological perspectives of sesamol: A review. Mini Rev Med Chem. 2020;20(11):988–1000. https://doi.org/10.2174/1389557520666200313120419
- 30. Sachdeva AK, Misra S, Kaur IP, Chopra K. Neuroprotective potential of sesamol and its loaded solid lipid nanoparticles in ICV-STZ-induced cognitive deficits: behavioral and biochemical evidence. Eur J Pharmacol. 2015;747:132–40. https://doi.org/10.1016/j.ejphar.2014.11.014
- 31. Oostenbrink BC, Pitera JW, van Lipzig MMH, Meerman JHN, van Gunsteren WF. Simulations of the estrogen receptor ligand-binding domain: affinity of natural ligands and xenoestrogens. J Med Chem. 2000;43(24):4594–605. https://doi.org/10.1021/jm001045d
- 32. Pianjing P, Thiantanawat A, Rangkadilok N, Watcharasit P, Mahidol C, Satayavivad J. Estrogenic activities of sesame lignans and their metabolites on human breast cancer cells. J Agric Food Chem. 2011;59(1):212–21. https://doi.org/10.1021/jf102006w
- 33. Lallous N, Dalal K, Cherkasov A, Rennie PS. Targeting alternative sites on the androgen receptor to treat castration-resistant prostate cancer. Int J Mol Sci. 2013;14(6):12496–519. https://doi.org/10.3390/ijms140612496
- 34. Corpas M. Folding patterns in protein sequences. The University of Manchester (United Kingdom); 2007.
- 35. Yadav V, Fuentes JL, Krishnan A, Singh N, Vohora D. Guidance for the use and interpretation of assays for monitoring anti-genotoxicity. Life Sci. 2023;122341. https://doi.org/10.1016/j.lfs.2023.122341
- 36. Sun C, Zhao S, Pan Z, Li J, Wang Y, Kuang H. The role played by mitochondria in polycystic ovary syndrome. DNA Cell Biol. 2024;43(4):158–74. https://doi.org/10.1089/dna.2023.0345
- 37. Ahn D, Go RE, Choi KC. Oxygen consumption rate to evaluate mitochondrial dysfunction and toxicity in cardiomyocytes. Toxicol Res. 2023;39(3):333–39. https://doi.org/10.1007/s43188-023-00183-3
Downloads
Download data is not yet available.