Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Rice yield predictions using remote sensing and machine learning algorithms: A review

DOI
https://doi.org/10.14719/pst.5976
Submitted
20 October 2024
Published
06-02-2025
Versions

Abstract

Crop yield prediction is becoming increasingly crucial due to global food security concerns, as highlighted by recent reports from the World Health Organization. Accurate early predictions can mitigate famine risks by estimating food supply, which is essential for 820 million people facing hunger globally. Rice is the primary staple food consumed worldwide; therefore, global rice yield and rice area are monitored using emerging technologies such as remote sensing (RS) and machine learning (ML). These technologies provide valuable tools for enhancing rice yield predictions. RS includes critical information on crop health, soil conditions and weather patterns. In contrast, ML algorithms analyze these datasets to identify patterns and relationships that affect yield. Integrating these technologies offers promising improvements in yield forecasting accuracy, with applications showing successful yield predictions 1-3 months before harvest. Various ML techniques, including Random Forest, Support Vector Machines and deep learning models such as LSTM (Long-Short Term Memory), have been employed, often in combination with RS data. However, these models face challenges, such as data quality, managing high-dimensional RS data and accounting for spatial and temporal variability. Despite these challenges, integrating RS and ML has significant potential for advancing precision agriculture and achieving sustainable food production. This study explores the advancements, practical applications and challenges associated with using RS and ML for rice yield prediction, emphasizing the importance of these technologies in addressing global food security and promoting sustainable agricultural practices.

References

  1. Chakraborty N. Rice Proteomics and Beyond. Rice Ress. 2015;03(02). https://doi.org/10.4172/2375–4338.1000e113
  2. FAO, IFAD, UNICEF, WFP and WHO. The State of Food Security and Nutrition in the World [internet ].Rome:FAO; 2021[cited 2024 Sept 18]. Available from: https://openknowledge.fao.org
  3. FAO. World Food and Agriculture – Statistical Yearbook 2022[internet]. Rome:FAO; 2022[cited 2024 Sept 18]. Available from: https://openknowledge.fao.org
  4. Furey S. Food poverty: zero hunger and the right to food. In: Leal Filho W, Azul AM, Brandli L, Ozuyar PG, Wall T, editors. Zero hunger. Cham:Springer International Publishing; 2020. p. 329-38. https://doi.org/10.1007/978–3–319–95675–6_115
  5. IndiaStat. Agriculture rice statistics and growth figures year–wise of india [internet].India:Indiastat Data Pvt Ltd.; 2024 [cited 2024 18 Sept]. https://www.indiastat.com/data/agriculture/rice.
  6. Hong D, He W, Yokoya N, Yao J, Gao L, Zhang L, et al. Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing. IEEE Geosci Remote Sens Mag. 2021;9(2): 52-87. https://doi.org/10.1109/mgrs.2021.3064051
  7. Moraga J, Duzgun HS, Cavur M, Soydan H. The geothermal artificial intelligence for geothermal exploration. Renewable Energy. 2022;192:134-49. https://doi.org/10.1016/j.renene.2022.04.113
  8. Bala SK, Islam AS. Correlation between potato yield and MODIS?derived vegetation indices. Int J Remote Sens. 2009;30(10):2491-2507. https://doi.org/10.1080/01431160802552744
  9. Li T, Angeles O, Marcaida M, Manalo E, Manalili MP, Radanielson A, et al. From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen–deficient environments. Agricultural and Forest Meteoro. 2017;237-238:246-56. https://doi.org/10.1016/j.agrformet.2017.02.025
  10. Mishra N, Mishra S, Tripathy HK. Rice yield estimation using deep learning. In: Panda M, Dehuri S, Patra MR, Behera PK, Tsihrintzis GA, Cho SB, et al. editors. Innovations in intelligent computing and communication. Cham: Springer International Publishing; 2022. p. https://doi.org/10.1007/978–3–031–23233–6_28
  11. Counce PA, Keisling TC, Mitchell AJ. A uniform, objective and adaptive system for expressing rice development. Crop Sci. 2000;40(2):436-43. https://doi.org/10.2135/cropsci2000.402436x.
  12. Vergara BS. Rice plant growth and development. In: Luh BS, editor. Rice. Boston, MA: Springer US; 1991. p. 13-22. https://doi.org/10.1007/978–1–4899–3754–4_2
  13. Hussain S, Zhang J Hua, Zhong C, Zhu L Feng, Cao X Chuang, Yu S Miao, et al. Effects of salt stress on rice growth, development characteristics and the regulating ways: A review. Journal of Integrative Agriculture. 2017;16(11): 2357-74. https://doi.org/10.1016/S2095–3119(16)61608–8
  14. Sadhukhan D, Mukherjee T, Sarkar A, Devi ND, Bisarya D, Kumar V, et al. A comprehensive analysis of drought stress responses in rice (Oryza sativa L.): insights into developmental stage variations from germination to grain filling. Int J Environ Cli Chan. 2024;14(7):141-58. https://doi.org/10.9734/ijecc/2024/v14i74260
  15. Linh TM, Huong TT, Viet BT. Study on the flowering in rice plant (Oryza sativa cv. OM5451). Sci Technol Develop J. 2023;26(3):2943–9. https://doi.org/10.32508/stdj.v26i3.4088
  16. Zhang J, Zhang Y Yan, Song N Yuan, Chen Q Li, Sun H Zheng, Peng T, et al. Response of grain–filling rate and grain quality of mid–season indica rice to nitrogen application. J Int Agric. 2021;20(6):1465-73. https://doi.org/10.1016/S2095–3119(20)63311–1
  17. Yoshida S. Fundamental of rice crop science. Los Baños (Philippines) International Rice Research Institute;1981
  18. McQueen RJ, Garner SR, Nevill–Manning CG, Witten IH. Applying machine learning to agricultural data. Comput. Electron. Agric 1995;12(4): 275-93. https://doi.org/10.1016/0168-1699(95)98601-9
  19. Zhang Y, editor. New advances in machine learning. London: Intechopen; 2010.
  20. Parameswari P, Rajathi N, Harshanaa KJ. Machine learning approaches for crop recommendation. In: 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA); 2021 Oct 8–9 Coimbatore, India. New York: IEEE; 2021 [cited 2024 Sep 19]. p. 1-5. https://ieeexplore.ieee.org/document/9675480
  21. Khan N, Kamaruddin MA, Ullah Sheikh U, Zawawi MH, Yusup Y, Bakht MP, et al. prediction of oil palm yield using machine learning in the perspective of fluctuating weather and soil moisture conditions: evaluation of a generic workflow. Plants. 2022;11(13):1697. https://doi.org/10.3390/plants11131697
  22. Kovacevic T, Mrcela L, Mercep A, Kostanjcar Z. Impact of look–back period on soil temperature estimation using machine learning models. In: 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC); 2020 May 25-28, Dubrovnik, Croatia. New York: IEEE; 2020 [cited 2024 Sep 19]. p. 1-5. https://ieeexplore.ieee.org
  23. Weiss U, Biber P, Laible S, Bohlmann K, Zell A. Plant species classification using a 3D LIDAR sensor and machine learning. In: 2010 Ninth International Conference on Machine Learning and Applications; 2010 Dec12-14, Washington, DC, USA. New York: IEEE; 2020 [cited 2024 Sep 19]. p. 339-45. https://ieeexplore.ieee.org
  24. Krishnan S, Aruna SK, Kanagarathinam K, Venugopal E. Identification of dry bean varieties based on multiple attributes using catboost machine learning algorithm. Scientific Programming. 2023;2023(1):2556066. https://doi.org/10.1155/2023/2556066
  25. Mayur Rajaram Salokhe. Machine learning: applications in agriculture (crop yield prediction, disease and pest detection). Int J Adv Res Sci Comm Techno. 2023;592-7. https://doi.org/10.48175/ijarsct–12088
  26. Alfred R, Obit JH, Chin CPY, Haviluddin H, Lim Y. Towards paddy rice smart farming: a review on big data, machine learning and rice production tasks. IEEE Access. 2021;9:50358-80. https://doi.org/10.1109/access.2021.3069449
  27. Kaur AP, Bhatt DP, Raja L. Applications of deep learning and machine learning in smart agriculture: A Survey. In: Hashmi MF, Kesakr AG, editors. Advances in environmental engineering and green technologies. IGI Global; 2023. p.34-57. https://doi.org/10.4018/978–1–6684–9975–7.ch003
  28. Pham HT, Awange J, Kuhn M, Nguyen BV, Bui LK. Enhancing crop yield prediction utilizing machine learning on satellite–based vegetation health indices. Sensors. 2022;22(3):719. https://doi.org/10.3390/s22030719
  29. Hashemi MGZ, Tan PN, Jalilvand E, Wilke B, Alemohammad H, Das NN. Yield estimation from SAR data using patch–based deep learning and machine learning techniques. Computers and Electronics in Agriculture. 2024;226: https://doi.org/10.1016/j.compag.2024.109340
  30. Murugesan R, Sudarsanam SK, Malathi G, Vijayakumar V, Neelanarayanan V, et al. Artificial intelligence and agriculture 5.0. Int J Rec Technol Eng. 2019;8:1870-7. https://doi.org/10.35940/ijrte.B1510.078219.
  31. Gul D, Banday RUZ. Transforming Crop Management Through Advanced AI and Machine Learning: Insights into Innovative Strategies for Sustainable Agriculture. London:Intechopen. 2024. https://doi.org/10.5772/acrt.20240030
  32. Abuzanouneh K, N. Al–Wesabi F, Abdulrahman Albraikan A, Al Duhayyim M, Al–Shabi M, Mustafa Hilal A, et al. Design of machine learning based smart irrigation system for precision agriculture. Computers, Mat Continua.2022;72(1):109-24. https://doi.org/10.32604/cmc.2022.022648
  33. Chang NB, Bai K. Multisensor data fusion and machine learning for environmental remote sensing. Baco Raton:CRC Press; 2018. https://doi.org/10.1201/9781315154602
  34. Chang NB, Bai K, Chen CF. Integrating multisensor satellite data merging and image reconstruction in support of machine learning for better water quality management. J Environ Manage. 2017;201:227-240. https://doi.org/10.1016/j.jenvman.2017.06.045
  35. Xu X, Gao P, Zhu X, Guo W, Ding J, Li C, et al. Design of an integrated climatic assessment indicator (ICAI) for wheat production: A case study in Jiangsu Province, China. Ecol Indi. 2019;101:943-53. https://doi.org/10.1016/j.ecolind.2019.01.059
  36. Chen C, Bao Y, Zhu F, Yang R. Remote sensing monitoring of rice growth under Cnaphalocrocis medinalis (Guenée) damage by integrating satellite and UAV remote sensing data. Int J Rem Sens. 2024;45(3):772-90. https://doi.org/10.1080/01431161.2024.2302350
  37. Iatrou M, Karydas C, Tseni X, Mourelatos S. Representation learning with a variational autoencoder for predicting nitrogen requirement in rice. Rem Sens. 2022;14(23):5978. https://doi.org/10.3390/rs14235978
  38. Yoshimura T, Koike N, Hashimoto K, Oura K, Nankaku Y, Tokuda K. Discriminative feature extraction based on sequential variational autoencoder for speaker recognition. In: 2018 Asia–Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC); 2018 Nov 12-15; Honolulu, HI, USA. New York: IEEE; 2018 [cited 2024 Sep 19]. p. 1742–66. Available from: https://ieeexplore.ieee.org
  39. Mak HWL, Han R, Yin HHF. Application of variational autoencoder (VAE) model and image processing approaches in game design. sensors. 2023;23(7):3457. https://doi.org/10.3390/s23073457
  40. Langevin S, Bethune C, Horne P, Kramer S, Gleason J, Johnson B, et al. Useable machine learning for Sentinel–2 multispectral satellite imagery. In: Bruzzone L, Bovolo F, Benediktsson JA, editors. Image and signal processing for remote sensing Spain Online Only SPIE; 2021. p. 112. https://doi.org/10.1117/12.2599951
  41. Teke M, Deveci HS, Haliloglu O, Gurbuz SZ, Sakarya U. A short survey of hyperspectral remote sensing applications in agriculture. In: 2013 6th International Conference on Recent Advances in Space Technologies (RAST); 2013 12–14 June; Istanbul, Turkey. New York: IEEE; 2013 [cited 2024 Sep 19]. p. 171-176. Available from: https://ieeexplore.ieee.org
  42. Dutta S, Patel NK, Srivastava SK. District wise yield models of rice in Bihar based on water requirement and meteorological data. J Ind Soc Rem Sens. 2001;29(3):175-82. https://doi.org/10.1007/BF02989929
  43. Huang Jingfeng, Tang Shuchuan, Ousama Abou–Ismail, Wang Renchao. Integration of remote sensing data and simulation model to estimate rice yield. In: 2001 International Conferences on Info–Tech and Info–Net. Proceedings. Beijing, China. New York: IEEE; 2001 [cited 2024 Sep 19]. p. 101-7. Available from: https://ieeexplore.ieee.org
  44. Zhuo W, Huang J, Li L, Huang R, Gao X, Zhang X, et al. Assimilating sar and optical remote sensing data into wofost model for improving winter wheat yield estimation. In: 2018 7th International Conference on Agro–geoinformatics (Agro–geoinformatics). Hangzhou. New York: IEEE; 2018 [cited 2024 Sep 19]. p. 101-7. Available from: https://ieeexplore.ieee.org
  45. Divakar MS, Elayidom MS, Rajesh R. Design and implementation of an efficient and cost effective deep feature learning model for rice yield mapping. Int J Comp Sci Engin. 2022;25(2):128. https://doi.org/10.1504/ijcse.2022.122205
  46. Prakash MA, Pazhanivelan S, Muthumanickam D, Ragunath KP, Sivamurugan AP. Mapping rice area in the cauvery delta zone of Tamil nadu using Sentinel 1a synthetic aperture radar (SAR) Data. Int J Environ Clim Chan. 2023;13(10):195-204. https://doi.org/10.9734/ijecc/2023/v13i102630
  47. Chen J, Lin H, Huang C, Fang C. The relationship between the leaf area index (LAI) of rice and the C?band SAR vertical/horizontal (VV/HH) polarization ratio. Int J Rem Sens. 2009;30(8):2149-54. https://doi.org/10.1080/01431160802609700
  48. Beriaux E, Jago A, Lucau–Danila C, Planchon V, Defourny P. Sentinel–1 Time series for crop identification in the framework of the future cap monitoring. Rem Sens. 2021;13(14):2785. https://doi.org/10.3390/rs13142785
  49. Wali E, Tasumi M, Moriyama M. Combination of linear regression lines to understand the response of sentinel–1 dual polarization sar data with crop phenology–case study in Miyazaki, Japan. Rem Sens. 2020;12(1): 189. https://doi.org/10.3390/rs12010189
  50. Srikanth P, Chakraborty A, Murthy CS. Crop monitoring using microwave remote sensing. In: Mitran T, Meena RS, Chakraborty A, editors. Geospatial technologies for crops and soils. Singapore: Springer Singapore; 2021. p. 201-28. https://doi.org/10.1007/978–981–15–6864–0_5
  51. Zeng Z, Gan Y, Kettner AJ, Yang Q, Zeng C, Brakenridge GR, et al. Towards high resolution flood monitoring: An integrated methodology using passive microwave brightness temperatures and Sentinel synthetic aperture radar imagery. J Hydrol. 2020;582:124377. https://doi.org/10.1016/j.jhydrol.2019.124377
  52. Mandal D, Rao YS. SASYA: An integrated framework for crop biophysical parameter retrieval and within–season crop yield prediction with SAR remote sensing data. Remote Sensing Applications. 2020;20:100366. https://doi.org/10.1016/j.rsase.2020.100366.
  53. Dissanayake DMPW, Rathnayake RMKT, Chathuranga LLG. Crop yield forecasting using machine learning techniques–a systematic literature review. KDU J Multidis Stud. 2023;5(1):54-65. https://doi.org/10.4038/kjms.v5i1.62
  54. Narayan KJ. Review of crop yield prediction using machine learning techniques. International Journal for Res App Sci Engin Techno. 2021;9(VI):4626-28. https://doi.org/10.22214/ijraset.2021.36058
  55. Kulyal M, Saxena P. Machine learning approaches for crop yield prediction: A Review. In: 2022 7th International Conference on Computing, Communication and Security (ICCCS); 2022 Nov 3; Seoul, Korea. New York: IEEE; 2022 [cited 2024 Sep 19]. p. 1–7. Available from: https://ieeexplore.ieee.org
  56. Chaudhary S, Mongia S, Sharma S, Singh N. Classification based Interactive Model for Crop Yield Prediction: Punjab State. In: 2022 11th International Conference on System Modeling & Advancement in Research Trends (SMART); 2022. Moradabad, India. New York: IEEE; 2022 [cited 2024 Sep 19]. p. 1-6. Available from: https://ieeexplore.ieee.org
  57. Wijayanto AW, Putri SR. Estimating rice production using machine learning models on multitemporal landsat–8 satellite images (Case Study: Ngawi Regency, East Java, Indonesia). In: 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom). Malang, Indonesia New York: IEEE; 2022 [cited 2024 Sep 19]. p. 1-6. Available from: https://ieeexplore.ieee.org
  58. Shuaibu N, Obunadike GN, Jamilu BA. Crop yield prediction using selected machine learning algorithms. Fud J Sci. 2024;8(1):61-8. https://doi.org/10.33003/fjs–2024–0801–2220
  59. Paudel D, Boogaard H, De Wit A, Janssen S, Osinga S, Pylianidis C, et al. Machine learning for large–scale crop yield forecasting. Agric Sys. 2021;187:103016. https://doi.org/10.1016/j.agsy.2020.103016
  60. GSM, Paudel S, Nakarmi R, Giri P, Karki SB. Prediction of crop yield based–on soil moisture using machine learning algorithms. In: 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS); 2022. Tashkent, Uzbekistan; New York: IEEE; 2022 [cited 2024 Sep 19]. p. 491-5. Available from: https://ieeexplore.ieee.org
  61. Thirumal S, Latha R. Automated rice crop yield prediction using sine cosine algorithm with weighted regularized extreme learning machine. In: 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS); 2023. Madurai, New York: IEEE; 2023 [cited 2024 Sep 19]. p. 491-5. Available from: https://ieeexplore.ieee.org
  62. Reddy DJ, Kumar MR. . Crop yield prediction using machine learning algorithm. In: 2021 4th International Conference on Computing and Communications Technologies (ICCCT); 2021. Chennai, India. New York: IEEE; 2021 [cited 2024 Sep 19]. p. 611-6. Available from: https://ieeexplore.ieee.org
  63. Pavani S, Sophy Beulet P A. Improved precision crop yield prediction using weighted–feature hybrid svm: analysis of ml algorithms. IETE J Res. 2023;1-13. https://doi.org/10.1080/03772063.2023.2192000
  64. Islam MD, Di L, Qamer FM, Shrestha S, Guo L, Lin L, et al. Rapid rice yield estimation using integrated remote sensing and meteorological data and machine learning. Remote Sens. 2023;15(9):2374. https://doi.org/10.3390/rs15092374
  65. Hanya I, Ishii K, Noguchi N. Monitoring rice growth environment by low–altitude remote sensing using spectroradiometer. IFAC Proceedings Volumes. 2010;43(26):184-9. https://doi.org/10.3182/20101206–3–JP–3009.00032
  66. Yin W, Cen H, He Y. Quantification of nitrogen status in rice canopy by low–altitude hyperspectral remote sensing.). Am Soc Agric Bio Engin. 2017. https://doi.org/10.13031/aim.201700537
  67. Han–Ya I, Ishii K, Noguchi N. Satellite and aerial remote sensing for production estimates and crop assessment. Environ Control Biol. 2010;48(2):51-8. https://doi.org/10.2525/ecb.48.51
  68. Bulacan Agricultural State College, Cuevas CM, Saludes R, Dorado M, Sta Cruz P. Assessment of nutrient status of lowland irrigated rice (Oryza sativa L.) using low altitude remote sensing. Philippine Journal of Agric Biosys Engineer. 2021;17(1):39-48. https://doi.org/10.48196/017.01.2021.04
  69. K. C. Swain, S. J. Thomson, H. P. W. Jayasuriya. Adoption of an unmanned helicopter for low–altitude remote sensing to estimate yield and total biomass of a rice crop. Transactions of the ASABE. 2010;53(1):21-7. https://doi.org/10.13031/2013.29493
  70. Pazhanivelan S, Geethalakshmi V, Tamilmounika R, Sudarmanian NS, Kaliaperumal R, Ramalingam K, et al. Spatial rice yield estimation using multiple linear regression analysis, semi–physical approach and assimilating sar satellite derived products with DSSAT crop simulation model. Agronomy. 2022;12(9):2008. https://doi.org/10.3390/agronomy12092008
  71. Wang F, Wang F, Zhang Y, Hu J, Huang J, Xie L, et al. Rice yield estimation at pixel scale using relative vegetation indices from unmanned aerial systems. In: 2019 8th International Conference on Agro–Geoinformatics (Agro–Geoinformatics); 2019. Istanbul, Turkey. New York: IEEE; 2019 [cited 2024 Sep 19]. p. 1-6. Available from: https://ieeexplore.ieee.org
  72. Tanaka Y, Watanabe T, Katsura K, Tsujimoto Y, Takai T, Tanaka TST, et al. Deep learning enables instant and versatile estimation of rice yield using ground–based rgb images. Plant Phenomics. 2023;5:0073. https://doi.org/10.34133/plantphenomics.0073
  73. Leelavathi KS, Rajasenathipathi M. A Novel crop yield prediction using deep learning and dimensionality reduction. Int Res J Multidis Scope. 2024;05(01):101-12. https://doi.org/10.47857/irjms.2024.v05i01.0158
  74. M. C, Dhanraj RK. Ensemble deep learning algorithm for forecasting of rice crop yield based on soil nutrition levels. ICST Transactions on Scalable Information Systems. 2023;e7. https://doi.org/10.4108/eetsis.v10i3.2610
  75. Demircio?lu A. The effect of feature normalization methods in radiomics. Insights into Imaging. 2024;15(1):2. https://doi.org/10.1186/s13244–023–01575–7
  76. Prince Pallayan B, Chitradurga Manjunath M. Artificial bee colony algorithm–based feature selection and hybrid ml framework for efficient rice yield prediction. Int J Electr Comput Eng Sys. 2024;15(3): 235-46. https://doi.org/10.32985/ijeces.15.3.3.
  77. Anitha S, Vanitha M. Imputation methods for missing data for a proposed VASA dataset. Int J Innov Technol Explor. Eng. 2019;9(1). https://doi.org/10.35940/ijitee.A5204119119
  78. Awad M. Toward precision in crop yield estimation using remote sensing and optimization techniques. Agriculture. 2019;9(3): 54. https://doi.org/10.3390/agriculture9030054
  79. Zhang Y, Wang D, Zhou Q. Advances in crop fine classification based on Hyperspectral Remote Sensing. In: 2019 8th International Conference on Agro–Geoinformatics (Agro–Geoinformatics); 2019. Istanbul, Turkey. New York: IEEE; 2019 [cited 2024 Sep 19]. p. 1-6. Available from: https://ieeexplore.ieee.org
  80. Ling J, Zhang H. WCDL: A Weighted Cloud Dictionary Learning Method for Fusing Cloud–Contaminated Optical and SAR Images. IEEE J Sel Top Appl Earth Obs Remote Sens.2023;16: 2931-41. https://doi.org/10.1109/JSTARS.2023.3259469
  81. Xu F, Shi Y, Ebel P, Yu L, Xia GS, Yang W, et al. GLF–CR:SAR–enhanced cloud removal with global–local fusion. ISPRS J Photogramm Remote Sens. 2022;192:268-78. https://doi.org/10.1016/j.isprsjprs.2022.08.002
  82. Wu M, Huang W, Niu Z, Wang Y, Wang C, Li W, et al. Fine crop mapping by combining high spectral and high spatial resolution remote sensing data in complex heterogeneous areas. Comp Elect Agric. 2017;139: 1-9. https://doi.org/10.1016/j.compag.2017.05.003
  83. Sweet L belle, Müller C, Anand M, Zscheischler J. Cross–validation strategy impacts the performance and interpretation of machine learning models. Artif L Earth Syst. 2023;2(4):e230026. https://doi.org/10.1175/aies–d–23–0026.1
  84. Qiu Y. Rice yield prediction based on LSTM and GRU. SPIE 2023; 126041V:1-7. https://doi.org/10.1117/12.2674760
  85. Chang CH, Lin J, Chang JW, Huang YS, Lai MH, Chang YJ. hybrid deep neural networks with multi–tasking for rice yield prediction using remote sensing data. agriculture. 2024;14(4):513. https://doi.org/10.3390/agriculture14040513
  86. Wangkheimayum N, Paliwal HB. development of rice yield forecasting model using linear regression for imphal west district, manipur, india. Int. J. Environ. Clim. 2023;13(9):485-490. https://doi.org/10.9734/ijecc/2023/v13i92258
  87. Islam MdM, Matsushita S, Noguchi R, Ahamed T. Development of remote sensing–based yield prediction models at the maturity stage of boro rice using parametric and nonparametric approaches. Remote Sens App: Soc Environ. 2021;22:100494. https://doi.org/10.1016/j.rsase.2021.100494
  88. Pham HT, Awange J, Kuhn M, Nguyen BV, Bui LK. Enhancing crop yield prediction utilizing machine learning on satellite–based vegetation health indices. Sensors. 2022;22(3):719. https://doi.org/10.3390/s22030719
  89. Alfred R, Obit JH, Chin CPY, Haviluddin H, Lim Y. Towards paddy rice smart farming: a review on big data, machine learning and rice production tasks. IEEE Access. 2021;9:50358-80. https://doi.org/10.1109/access.2021.3069449
  90. Mia MdS, Tanabe R, Habibi LN, Hashimoto N, Homma K, Maki M, et al. multimodal deep learning for rice yield prediction using uav–based multispectral imagery and weather data. Remote Sens. 2023;15(10):2511. https://doi.org/10.3390/rs15102511
  91. Bellis ES, Hashem AA, Causey JL, Runkle BRK, Moreno–García B, Burns BW, et al. Detecting Intra–field variation in rice yield with unmanned aerial vehicle imagery and deep learning. Frontiers in Plant Science. 2022;13: 716506. https://doi.org/10.3389/fpls.2022.716506
  92. Son NT, Chen CF, Cheng YS, Toscano P, Chen CR, Chen SL, et al. Field-scale rice yield prediction from Sentinel–2 monthly image composites using machine learning algorithms. Ecolog Info. 2022;69: 101618. https://doi.org/10.1016/j.ecoinf.2022.101618
  93. Guo Y, Li S, Zhang Z, Li Y, Hu Z, Xin D, et al. Automatic and accurate calculation of rice seed setting rate based on image segmentation and deep learning. Fron Pl Sci. 2021;12:770916. https://doi.org/10.3389/fpls.2021.770916
  94. Lu J, Li J, Fu H, Tang X, Liu Z, Chen H, et al. Deep learning for multi-source, data-driven crop yield prediction in Northeast China. Agriculture. 2024;14(6):794. https://doi.org/10.3390/agriculture14060794
  95. Liu L, Xie Y, Zhu B, Song K. Rice leaf chlorophyll content estimation with different crop coverages based on Sentinel–2. Ecol Inform. 2024;81:102622. https://doi.org/10.1016/j.ecoinf.2024.102622
  96. Brinkhoff J, Clarke A, Dunn BW, Groat M. Analysis and forecasting of Australian rice yield using phenology–based aggregation of satellite and weather data. Agric Forest Meteorol. 2024;353:110055. https://doi.org/10.1016/j.agrformet.2024.110055
  97. Fu X, Zhao G, Wu W, Xu B, Li J, Zhou X, et al. Assessing the impacts of natural disasters on rice production in Jiangxi, China. International J Remote Sens. 2022;43(5):1919-41. https://doi.org/10.1080/01431161.2022.2049914
  98. Mansaray LR, Wang F, Kanu AS, Yang L. Evaluating Sentinel–1A datasets for rice leaf area index estimation based on machine learning regression models. Geocarto Int. 2022;37(5):1225-36. https://doi.org/10.1080/10106049.2020.1773545
  99. Son NT, Chen CF, Cheng YS, Toscano P, Chen CR, Chen SL, et al. Field–scale rice yield prediction from Sentinel–2 monthly image composites using machine learning algorithms. Ecol Info. 2022;69: 101618. https://doi.org/10.1016/j.ecoinf.2022.101618
  100. Eugenio FC, Grohs M, Schuh M, Venancio LP, Schons C, Badin TL, et al. Estimated flooded rice grain yield and nitrogen content in leaves based on RPAS images and machine learning. Field Crops Res. 2023;292:108823.https://doi.org/10.1016/j.fcr.2023.108823.
  101. Yu W, Yang G, Li D, Zheng H, Yao X, Zhu Y, et al. Improved prediction of rice yield at field and county levels by synergistic use of SAR, optical and meteorological data. Agric For Meteoro. 2023;342:109729. https://doi.org/10.1016/j.agrformet.2023.109729
  102. Pazhanivelan S, Ragunath KP, Sudarmanian NS, Kumaraperumal R, Setiyono T, Quicho ED. Integrating time–series sar data and oryza crop growth model in rice area mapping and yield estimation for crop insurances. Int Arch Photo, Remote Sens Spa Info Sci. 2019;XLII–3/W6: 239–43. https://doi.org/10.5194/isprs-archives-XLII-3-W6-239-2019
  103. Jain V, Saxena S, Dubey S, Choudhary K, Sehgal S, Neetu, et al. Rice (kharif) production estimation using sar data of different satellites and yield models: a comparative analysis of the estimates generated under fasal project. Int Arch Photo, Remote Sens Spa Info Sci. 2019;XLII–3/W6:99-107. https://doi.org/10.5194/isprs–archives–XLII–3–W6–99–2019
  104. Arumugam P, Chemura A, Schauberger B, Gornott C. Remote Sensing Based Yield Estimation of Rice (Oryza Sativa L.) Using Gradient Boosted Regression in India. Remote Sens. 2021;13(12):2379. https://doi.org/10.3390/rs13122379
  105. Jiya EA, Illiyasu U, Akinyemi M. Rice yield forecasting: a comparative analysis of multiple machine learning algorithms. J Info Sys Infor. 2023;5(2):785-99. https://doi.org/10.51519/journalisi.v5i2.506
  106. Ranjan AK, Parida BR. Paddy acreage mapping and yield prediction using Sentinel–based optical and SAR data in Sahibganj district, Jharkhand (India). Spatial Info Res. 2019;27(4):399-410. https://doi.org/10.1007/s41324–019–00246–4
  107. Satpathi A, Setiya P, Das B, Nain AS, Jha PK, Singh S, et al. Comparative Analysis of Statistical and Machine Learning Techniques for Rice Yield Forecasting for Chhattisgarh, India. Sustainability. 2023;15(3):2786. https://doi.org/10.3390/su15032786.
  108. Su Y xue, Xu H, Yan L jiao. Support vector machine–based open crop model (SBOCM): Case of rice production in China. S J Biol Sci. 2017;24(3):537-47. https://doi.org/10.1016/j.sjbs.2017.01.024
  109. Hemalatha N, Akhil W, Vinod R. Computational yield prediction of rice using knn regression. In: Shukla PK, Singh KP, Tripathi AK, Engelbrecht A, editors. Computer vision and robotics. singapore: Singapore:Springer Nature; 2023. p. 295-308. https://doi.org/10.1007/978–981–19–7892–0_23
  110. Siyal AA, Dempewolf J, Becker–Reshef I. Rice yield estimation using Landsat ETM + Data. J App Rem Sens. 2015;9(1):095986.https://doi.org/10.1117/1.JRS.9.095986
  111. Islam MD, Di L, Qamer FM, Shrestha S, Guo L, Lin L, et al. Rapid rice yield estimation using integrated remote sensing and meteorological data and machine learning. Remote Sensing. 2023;15(9):2374. https://doi.org/10.3390/rs15092374

Downloads

Download data is not yet available.