Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Comparison of economics, energy budgeting and carbon footprint of unmanned aerial vehicle and knapsack-based weed management practices in dry direct-seeded rice

DOI
https://doi.org/10.14719/pst.5980
Submitted
19 October 2024
Published
25-06-2025 — Updated on 01-07-2025
Versions

Abstract

A field experiment assessed the knowledge gap in economic, energetics and carbon dynamics of Unmanned Aerial Vehicle and knapsack-based herbicide applications in dry direct-seeded rice. Twelve treatments were arranged in a randomized block design replicated thrice with varying UAV spray volumes (25, 50, 75 and 100 L ha-1) and knapsack spray volume of 500 L ha-1 at 75 % HRD (pendimethalin + penoxsulam on 3 DAS at 468.8 g ha-1 fb bispyribac-sodium on 20 DAS at 18.8 g ha-1) and 100 % HRD (pendimethalin + penoxsulam on 3 DAS at 625 g ha-1 fb bispyribac-sodium on 20 DAS at 25 g ha-1), along with hand weeding twice and unweeded control. Results showed that UAV spray volume at 50 L ha-1 with 100 % HRD was significant over other weed management practices by higher grain yield (3866.0 kg ha-1), higher NPK nutrient uptake (105.4, 21.7 and 130.8 kg ha-1), higher B:C ratio (2.13), improved energy efficiency (11.58), higher energy profitability (10.58 kg MJ-1), higher carbon sustainability index (18.4) and lower carbon emission (0.064 kg CO2 eq. kg-1 yield). Therefore, UAV spray at 50 L ha-1 of pendimethalin + penoxsulam on 3 DAS at 625 g ha-1 fb bispyribac-sodium on 20 DAS at 25 g ha-1 (100 % HRD) is recommended for DDSR cultivating farmers in the coastal deltaic ecosystem of South India.

References

  1. 1. Gartaula H, Sapkota TB, Chhetri AK, Prasad G, Badstue L. Gendered impacts of greenhouse gas mitigation options for rice cultivation in India. Clim Change. 2020;163:1045–63. https://doi.org/10.1007/s10584-020-02941-w
  2. 2. Sivasakthi D, Saravanane P, Sridevi V, Coumaravel K. Effect of 2, 4-D dose and formulation for brown manuring on weed dynamics, yield and economics in wet seeded rice. Indian J Weed Sci. 2024;56(2):124–27. https://doi.org/10.5958/0974-8164.2024.00021.1
  3. 3. Keerthi DE, Saravanane P, Poonguzhalan R, Nadaradjan S. Brown manuring for improved crop growth, yield and energetics of wet seeded rice (Oryza sativa) in the coastal deltaic ecosystem. Indian J Agron. 2024;69(1):87–90. https://doi.org/10.59797/ija.v69i1.5488
  4. 4. Karthickraja A, Saravanane P. Competitive ability of Parthenium hysterophorus with direct seeded rice and influence of parthenium flowering dynamics with meteorological factors. Plant Arch. 2025;25(1):2717–23. https://doi.org/10.51470/PLANTARCHIVES.2025.v25.supplement-1.376
  5. 5. Pooja K, Saravanane P, Sridevi V, Nadaradjan S, Vijayakumar S. Effect of cultivars and weed management practices on productivity, profitability and energetics of dry direct-seeded rice. Oryza- An Int J Rice. 2021;58(3):442–47. https://doi.org/10.35709/ory.2021.58.3.1
  6. 6. Paul RA, Arthanari PM, Pazhanivelan S, Kavitha R, Djanaguiraman M. Drone-based herbicide application for energy saving, higher weed control and economics in direct-seeded rice (Oryza sativa). Indian J Agric Sci. 2023;93(7):704–09. https://doi.org/10.56093/ijas.v93i7.137859
  7. 7. Binning AS, Pathak BS, Panesar BS. Energy audit of crop production system. Research bulletin: School of Energy studies for agriculture, Ludhiana: P.A.U; 1984.
  8. 8. Vijayakumar S, Kumar D, Shivay YS, Sharma VK, Sharma DK, Saravanane P, et al. Energy budgeting of aerobic rice (Oryza sativa)- wheat (Triticum aestivum) cropping system as influenced by potassium fertilization. Indian J Agric Sci. 2019;89(11):1911–15. https://doi.org/10.56093/ijas.v89i11.95341
  9. 9. Basavalingaiah K, Ramesha YM, Paramesh V, Rajanna GA, Jat SL, Misra SD, et al. Energy budgeting, data envelopment analysis and greenhouse gas emission from rice production system: A case study from puddled transplanted rice and direct-seeded rice system of Karnataka, India. Sustain. 2020;12(16):6439. https://doi.org/10.3390/su12166439
  10. 10. Lal R. Carbon emission from farm operations. Environ Intern. 2004;30(7):981–90. https://doi.org/10.1016/j.envint.2004.03.005
  11. 11. West TO, Marland G. Net carbon flux from agricultural ecosystems: methodology for full carbon cycle analyses. Environ Pollution. 2002;116(3):439–44. https://doi.org/10.1016/S0269-7491(01)00221-4
  12. 12. Chaudhary VP, Singh KK, Pratibha G, Bhattacharyya R, Shamim M, Srinivas I, Patel A. Energy conservation and greenhouse gas mitigation under different production systems in rice cultivation. Energy. 2017;130(1):307–17. https://doi.org/10.1016/j.energy.2017.04.131
  13. 13. Shafaei SM, Moghadami AN, Kamgar S. Analytical study of friction coefficients of pomegranate seed as essential parameters in design of post- harvest equipment. Inf Process Agric. 2016;3(3):133–45. https://doi.org/10.1016/j.inpa.2016.05.003
  14. 14. Team RC. R: A language and environment for statistical computing. [Internet]. Vienna: R Foundation for Statistical. Computing; 2020 [cited 25 Jan 2025]. Available from: https://www.r-project.org/
  15. 15. Saravanane P. Effect of different weed management options on weed flora, rice grain yield and economics in dry direct-seeded rice. Ind J Weed Sci. 2020;52(2):102–06. https://doi.org/10.5958/0974-8164.2020.00019.2
  16. 16. Fulton GO, Furness GO. Low volume applications of herbicides sprayed on to soil, crop or pasture with a bluff plate sprayer. Plant Prot Q. 1988;3(1):108–11.
  17. 17. Kumar V, Kumari A, Price AJ, Bana RS, Singh V, Bamboriya SD. Impact of futuristic climate variables on weed biology and herbicidal efficacy: A review. Agron. 2023;13(2):559–73. https://doi.org/10.3390/agronomy13020559
  18. 18. Kaur S, Kaur R, Chauhan BS. Understanding crop-weed-fertilizer-water interactions and their implications for weed management in agricultural systems. Crop Protect. 2018;103(1):65–72. https://doi.org/10.1016/j.cropro.2017.09.011
  19. 19. Chen P, Lan Y, Douzals JP, Ouyang F, Wang J, Xu W. Droplet distribution of unmanned aerial vehicle under several spray volumes and canopy heights in the cotton canopy. Int J Prec Agric Aviat. 2018;1(1):141–57. https://doi.org/10.33440/j.ijpaa.20200304.136
  20. 20. Kumar V, Mahajan G, Sheng Q, Chauhan BS. Weed management in wet direct-seeded rice (Oryza sativa L.): issues and opportunities. Adv Agron. 2023;179(1):91–133. https://doi.org/10.1016/bs.agron.2023.01.002
  21. 21. Karthickraja A, Saravanane P, Poonguzhalan R, Nadaradjan S. Comparison of UAV and knapsack herbicide application methods on weed spectrum, crop growth and yield in dry direct-seeded rice. Ind J Weed Sci. 2024;56(3):307–11. https://doi.org/10.5958/0974-8164.2024.00051.6
  22. 22. Singh MK, Pal SK, Thakur R, Verma UN. Energy input-output relationship of cropping systems. Indian J Agric Sci. 1997;67(6):262–64.
  23. 23. Lal B, Gautam P, Nayak AK, Panda BB, Bihari P, Tripathi R, et al. Energy and carbon budgeting of tillage for environmentally clean and resilient soil health of rice-maize cropping system. J Cleaner Prod. 2019;226(1):815–30. https://doi.org/10.1016/j.jclepro.2019.04.041
  24. 24. Ghosh D, Brahmachari K, Das A, Hassan MM, Mukherjee PK, Sarkar S, et al. Assessment of energy budgeting and its indicator for sustainable nutrient and weed management in a rice-maize-green gram cropping system. Agron. 2021;11(1):166. https://doi.org/10.3390/agronomy11010166
  25. 25. Yang W, Zhang N. Does the carbon emissions trading scheme improve carbon total factor productivity? Evidence from Chinese cities. Green Low-Carbon Econ. 2024;2(2):87‒96. https://doi.org/10.47852/bonviewGLCE3202905
  26. 26. Malhi GS, Rana MC, Kumar S, Rehmani MIA, Hashem A, Allah AEF. Efficacy, energy budgeting and carbon footprints of weed management in blackgram (Vigna mungo L.). Sustain. 2021;13(23):13239. https://doi.org/10.3390/su132313239
  27. 27. Minofar B, Milcic N, Marousek J, Gavurova B, Marouskova A. Understanding the molecular mechanisms of interactions between biochar and denitrifiers in N₂O emissions reduction: pathway to more economical and sustainable fertilizers. Soil Tillage Res. 2025;248(1):106405. https://doi.org/10.1016/j.still.2024.106405
  28. 28. Marousek J, Marouskova A, Gavurova B, Minofar B. Techno-economic considerations on cement substitute obtained from waste refining. J Cleaner Prod. 2023;412(1):137326. https://doi.org/10.1016/j.jclepro.2023.137326

Downloads

Download data is not yet available.