Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

The evolution of Artificial Intelligence in agriculture: A biblio-metric analysis

DOI
https://doi.org/10.14719/pst.5990
Submitted
19 October 2024
Published
07-04-2025
Versions

Abstract

Artificial Intelligence (AI) has emerged as a revolutionary force, fundamentally reshaping conventional practices and opening new avenues for growth across various sectors. In agriculture, AI is transforming practices by addressing key challenges such as soil health, maximising production and alleviating labour shortages. AI helps farmers gain insights into crop management, optimise resources and improve efficiency. However, high initial costs and the need for specialised knowledge pose barriers, particularly for small-scale farmers. Despite these challenges, the future of AI in agriculture appears promising, with advancements in autonomous systems and AI-driven precision farming poised to boost productivity and sustainability. This systematic review evaluates AI implementation in agriculture over the past decade through a bibliometric analysis of 70 research papers from the Scopus database. It highlights contributions such as computer vision and deep learning, which enhance crop management by enabling real-time health monitoring, early disease detection and data-driven decisions that boost yields. The bibliometric analysis also explores co-authorship networks, illustrating collaborative efforts among researchers and institutions in the agricultural domain. The analysis of annual research patterns reveals a steady increase in AI-related publications, reflecting a growing interest and investment in this field. Furthermore, the assessment of global scientific outputs underscores the widespread adoption of AI technologies, highlighting their potential to revolutionise agriculture and contribute to food security in an era of increasing demand. Overall, this review illustrates the dynamic nature of AI in agriculture and its promising future.

References

  1. Musiolik TH, Cheok AD. Analyzing future applications of AI, sensors and robotics in society: Advances in computational intelligence and robotics. IGI Global. https://doi.org/10.2021;4018:978-1
  2. H, Wang T, Liu Y, Qiao X, Li Y. Computer vision technology in agricultural automation - A review. Inf Process Agric. 2020;7(1):1–19. https://doi.org/10.1016/j.inpa.2019.09.006
  3. Mishra S. Artificial intelligence: A review of progress and prospects in medicine and healthcare. J Electronics Electromed Eng Med Inform. 2022;4(1):1–23. https://doi.org/10.35882/jeeemi.v4i1.1
  4. Aggarwal S, Bansal S, Goel R. AI in agriculture: A looming challenge, a gleaming opportunity. Int J Eng Sci and Humanit. 2024;14 (Special Issue 1):43–52. https://doi.org/10.62904/3jnm5k59
  5. Marousek J, Gavurova B, Marouskova A. Cost breakdown indicates that biochar production from microalgae in central Europe requires innovative cultivation procedures. Energy Nexus. 2024;16:100335. https://doi.org/10.1016/j.nexus.2024.100335
  6. Minofar B, Mil?i? N, Maroušek J, Gavurová B, Maroušková A. Understanding the molecular mechanisms of interactions between biochar and denitrifiers in N?O emissions reduction: Pathway to more economical and sustainable fertilizers. Soil Till Res. 2025;248:106405. https://doi.org/10.1016/j.still.2024.106405
  7. Mohr S, Kühl R. Acceptance of artificial intelligence in German agriculture: an application of the technology acceptance model and the theory of planned behavior. Precis Agri. 2021;22(6):1816–44. https://doi.org/10.1007/s11119-021-09814-x
  8. Brem A, Giones F, Werle M. The AI digital revolution in innovation: A conceptual framework of artificial intelligence technologies for the management of innovation. IEEE Trans Eng Manag. 2021;70(2):770–76. https://doi.org/10.1109/TEM.2021.3109983
  9. Odume BW. Artificial intelligence in agriculture: Application in developing countries; 2024 Available at SSRN 4887865. https://doi.org/10.2139/ssrn.4887865
  10. Ahmad A, Liew AX, Venturini F, Kalogeras A, Candiani A, Di Benedetto G, et al. AI can empower agriculture for global food security: challenges and prospects in developing nations. Front Artif Intell. 2024;7:1328530. https://doi.org/10.3389/frai.2024.1328530
  11. Kudama G, Dangia M, Wana H, Tadese B. Will digital solution transform Sub-Sahara African agriculture? Artif Intell Agric. 2021;5:292–300. https://doi.org/10.1016/j.aiia.2021.12.001
  12. Sampaio RF, Mancini MC. Systematic review studies: a guide for careful synthesis of the scientific evidence. Braz J Phys Ther. 2007;11:83–89.
  13. Haddaway NR, Page MJ, Pritchard CC, McGuinness LA. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and open synthesis. Campbell Syst Rev. 2022;18(2):e1230. https://doi.org/10.1002/cl2.1230
  14. Dervis H. Bibliometric analysis using bibliometrix an R package. J Scientometric Res. 2019;8(3):156–60. https://doi.org/10.5530/jscires.8.3.32
  15. Pandey P, Patyane K, Padekar M, Mohite R, Mane P, Avhad A, editors. Plant disease detection using deep learning model-application FarmEasy. 2023. International Conference on Advanced Computing Technologies and Applications (ICACTA). IEEE; 2023. https://doi.org/10.1109/ICACTA58201.2023.10393095
  16. Kamilaris A, Prenafeta-Boldú FX. Deep learning in agriculture: A survey. Comput and Electron Agric. 2018;147:70–90. https://doi.org/10.1016/j.compag.2018.02.016
  17. Kakani V, Nguyen VH, Kumar BP, Kim H, Pasupuleti VR. A critical review on computer vision and artificial intelligence in food industry. J Agric Food Res. 2020;2:100033. https://doi.org/10.1016/j.jafr.2020.100033
  18. Kshetri N. Evolving uses of artificial intelligence in human resource management in emerging economies in the global South: some preliminary evidence. Manag Res Rev. 2021;44(7):970–90. https://doi.org/10.1108/MRR-03-2020-0168
  19. Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, et al. Artificial intelligence: A powerful paradigm for scientific research. The Innov. 2021;2(4): https://doi.org/10.1016/j.xinn.2021.100179
  20. Zheng Y-Y, Kong J-L, Jin X-B, Wang X-Y, Su T-L, Zuo M. CropDeep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors. 2019;19(5):1058. https://doi.org/10.3390/s19051058
  21. Kliestik T, Kral P, Bugaj M, Durana P. Generative artificial intelligence of things systems, multisensory immersive extended reality technologies and algorithmic big data simulation and modelling tools in digital twin industrial metaverse. Equilibrium Quarterly J Economics and Economic Policy. 2024;19(2):429–61. https://doi.org/10.24136/eq.3108
  22. Kliestik T, Nica E, Durana P, Popescu GH. Artificial intelligence-based predictive maintenance, time-sensitive networking and big data-driven algorithmic decision-making in the economics of industrial internet of things. Oeconomia Copernicana. 2023;14(4):1097–138. https://doi.org/10.24136/oc.2023.033
  23. Chouhan SS, Singh UP, Jain S. Applications of computer vision in plant pathology: a survey. Archives of Computational Methods in Engineer. 2020;27(2):611–32. https://doi.org/10.1007/s11831-019-09324-0
  24. Chamara N, Bai G, Ge Y. AICropCAM: Deploying classification, segmentation, detection and counting deep-learning models for crop monitoring on the edge. Computers and Electronics in Agri. 2023;215:108420. https://doi.org/10.1016/j.compag.2023.108420
  25. Burrell DN, Burton SL, Nobles C, Dawson ME, McDowell T. Exploring technological management innovations that include artificial intelligence and other innovations in global food production. Intern J Society Systems Sci. 2020;12(4):267–85. https://doi.org/10.1504/IJSSS.2020.112408
  26. Paymode AS, Malode VB. Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG. Artificial Intelligence in Agri. 2022;6:23–33. https://doi.org/10.1016/j.aiia.2021.12.002
  27. Upadhye SA, Dhanvijay MR, Patil SM. Sugarcane disease detection using CNN-deep learning method: An Indian perspective. Universal J Agri Res. 2023;11(1):80–97. https://doi.org/10.13189/ujar.2023.110108
  28. Restrepo-Arias JF, Branch-Bedoya JW, Awad G. Plant disease detection strategy based on image texture and Bayesian optimization with small neural networks. Agri (Switzerland). 2022;12(11): https://doi.org/10.3390/agriculture12111964
  29. Abbasi R, Martinez P, Ahmad R. Crop diagnostic system: A robust disease detection and management system for leafy green crops grown in an aquaponics facility. Artificial Intelligence in Agri. 2023;10:1–12. https://doi.org/10.1016/j.aiia.2023.09.001
  30. Alsaeedi AH, Al-juboori AM, Al-Mahmood HHR, Hadi SM, Mohammed HJ, Aziz MR, et al. Dynamic clustering strategies boosting deep learning in olive leaf disease diagnosis. Sustain (Switzerland). 2023;15(18):13723. https://doi.org/10.3390/su151813723
  31. Chowdhury MEH, Rahman T, Khandakar A, Ayari MA, Khan AU, Khan MS, et al. Automatic and reliable leaf disease detection using deep learning techniques. AgriEngineer. 2021;3(2):294–312. https://doi.org/10.3390/agriengineering3020020
  32. Fraiwan M, Faouri E, Khasawneh N. Classification of corn diseases from leaf images using deep transfer learning. Plants. 2022;11(20):2668. https://doi.org/10.3390/plants11202668
  33. Zhang Z, Qiao Y, Guo Y, He D. Deep learning based automatic grape Downy Mildew detection. Front in Plant Sci. 2022;13. https://doi.org/10.3389/fpls.2022.872107
  34. Islam MM, Adil MAA, Talukder MA, Ahamed MKU, Uddin MA, Hasan MK, et al. DeepCrop: Deep learning-based crop disease prediction with web application. J Agri and Food Res. 2023;14. https://doi.org/10.1016/j.jafr.2023.100764
  35. Khan H, Haq IU, Munsif M, Mustaqeem, Khan SU, Lee MY. Automated wheat diseases classification framework using advanced machine learning technique. Agri (Switzerland). 2022;12(8):1226. https://doi.org/10.3390/agriculture12081226
  36. Cruz A, Ampatzidis Y, Pierro R, Materazzi A, Panattoni A, De Bellis L, et al. Detection of grapevine yellows symptoms in Vitis vinifera L. with artificial intelligence. Computers and Electronics in Agri. 2019;157:63–76. https://doi.org/10.1016/j.compag.2018.12.028
  37. Ullah Z, Alsubaie N, Jamjoom M, Alajmani SH, Saleem F. EffiMob-Net: A deep learning-based hybrid model for detection and identification of tomato diseases using leaf images. Agri (Switzerland). 2023;13(3):737. https://doi.org/10.3390/agriculture13030737
  38. Lu Y, Wu X, Liu P, Li H, Liu W. Rice disease identification method based on improved CNN-BiGRU. Artificial Intelligence in Agri. 2023;9:100–09. https://doi.org/10.1016/j.aiia.2023.08.005
  39. Abdulridha J, Ampatzidis Y, Qureshi J, Roberts P. Identification and classification of Downy Mildew severity stages in watermelon utilizing aerial and ground remote sensing and machine learning. Front in Plant Sci. 2022;13. https://doi.org/10.3389/fpls.2022.791018
  40. Gremes MF, Fermo IR, Krummenauer R, Flores FC, Andrade CMG, Lima OCDM. System of counting green oranges directly from trees using artificial intelligence. AgriEngineer. 2023;5(4):1813–31. https://doi.org/10.3390/agriengineering5040111
  41. Vijayakumar V, Ampatzidis Y, Costa L. Tree-level citrus yield prediction utilizing ground and aerial machine vision and machine learning. Smart Agri Technol. 2023;3. https://doi.org/10.1016/j.atech.2022.100077
  42. Saddik A, Latif R, Abualkishik AZ, El Ouardi A, Elhoseny M. Sustainable yield prediction in agricultural areas based on fruit counting approach. Sustain (Switzerland). 2023;15(3):2707. https://doi.org/10.3390/su15032707
  43. Liu J, Wang C, Xing J. YOLOv5-ACS: Improved model for apple detection and positioning in apple forests in complex scenes. Forests. 2023;14(12):2304. https://doi.org/10.3390/f14122304
  44. Sarijaloo BF, Porta M, Taslimi B, Pardalos PM. Yield performance estimation of corn hybrids using machine learning algorithms. Artificial Intelligence in Agri. 2021;5:82–89. https://doi.org/10.1016/j.aiia.2021.05.001
  45. Cerqueira CL, Arce JE, Vendruscolo DGS, Dolácio CJF, Filho SVSC, Tonini H. Tape modeling of eucalyptus stem in Crop-Livestock-Forestry integration systems. Floresta. 2019;49(3):493–502. https://doi.org/10.5380/rf.v49i3.59504
  46. Barbosa BDS, Ferraz GAES, Costa L, Ampatzidis Y, Vijayakumar V, dos Santos LM. UAV-based coffee yield prediction utilizing feature selection and deep learning. Smart Agri Technol. 2021;1. https://doi.org/10.1016/j.atech.2021.100010
  47. Cruz-Domínguez O, Carrera-Escobedo JL, Guzmán-Valdivia CH, Ortiz-Rivera A, García-Ruiz M, Durán-Muñoz HA, et al. A novel method for dried chili pepper classification using artificial intelligence. J Agri and Food Res. 2021;3. https://doi.org/10.1016/j.jafr.2021.100099
  48. Di Y, Gao M, Feng F, Li Q, Zhang H. A new framework for winter wheat yield prediction integrating deep learning and Bayesian optimization. Agron. 2022;12(12):3194. https://doi.org/10.3390/agronomy12123194
  49. Dornelles EF, Kraisig AR, da Silva JAG, Sawicki S, Roos-Frantz F, Carbonera R. Artificial intelligence in seeding density optimization and yield simulation for oat [Inteligência artificial na otimização da densidade de semeadura e simulação da produtividade da aveia]. Revista Brasileira de Engenharia Agricola e Ambiental. 2018;22(3):183–88. https://doi.org/10.1590/1807-1929/agriambi.v22n3p183-188
  50. Gadotti GI, Ascoli CA, Bernardy R, Monteiro DCMR, Pinheiro DMR. Machine learning for soybean seeds lots classification. Engenharia Agricola. 2021;42(SpecialIssue). https://doi.org/10.1590/1809-4430-eng.agric.v42nepe20210101/2022
  51. Sharma A, Satish D, Sharma S, Gupta D. iRSVPred: A web server for artificial intelligence based prediction of major basmati paddy seed varieties. Front in Plant Sci. 2020;10. https://doi.org/10.3389/fpls.2019.01791
  52. Fuentes-Peñailillo F, Silva CG, Guzmán PR, Burgos I, Ewertz F. Automating seedling counts in horticulture using computer vision and AI. Horticulturae. 2023;9(10):1134. https://doi.org/10.3390/horticulturae9101134
  53. Zhou X, Lee WS, Ampatzidis Y, Chen Y, Peres N, Fraisse C. Strawberry maturity classification from UAV and near-ground imaging using deep learning. Smart Agri Technol. 2021;1. https://doi.org/10.1016/j.atech.2021.100001
  54. Huang TW, Bhat SA, Huang NF, Chang CY, Chan PC, Elepano AR. Artificial Intelligence-based real-time pineapple quality classification using acoustic spectroscopy. Agri (Switzerland). 2022;12(2):129. https://doi.org/10.3390/agriculture12020129
  55. Molina-Rotger M, Morán A, Miranda MA, Alorda-Ladaria B. Remote fruit fly detection using computer vision and machine learning-based electronic trap. Front in Plant Sci. 2023;14:1241576. https://doi.org/10.3389/fpls.2023.1241576
  56. Khalid S, Oqaibi HM, Aqib M, Hafeez Y. Small pests detection in field crops using deep learning object detection. Sustain. 2023;15(8):6815. https://doi.org/10.3390/su15086815
  57. Ramirez-Gi JG, León-Rueda WA, Castro-Franco M, Vargas G. Population dynamics and estimation of damage of the Spittlebug Aeneolamia varia on sugarcane in Colombia by using remote sensing and machine learning tools. Sugar Tech. 2023;25(5):1115–33. https://doi.org/10.1007/s12355-023-01247-2
  58. Bereciartua-Pérez A, Gómez L, Picón A, Navarra-Mestre R, Klukas C, Eggers T. Multiclass insect counting through deep learning-based density maps estimation. Smart Agri Technol. 2023;3:100125. https://doi.org/10.1016/j.atech.2022.100125
  59. Ciampi L, Zeni V, Incrocci L, Canale A, Benelli G, Falchi F, et al. A deep learning-based pipeline for whitefly pest abundance estimation on chromotropic sticky traps. Ecological Informatics. 2023;78:102384. https://doi.org/10.1016/j.ecoinf.2023.102384
  60. Talukder MSH, Sulaiman RB, Chowdhury MR, Nipun MS, Islam T. PotatoPestNet: a CT InceptionV3-RS-based neural network for accurate identification of potato pests. Smart Agri Technol. 2023;5:100297. https://doi.org/10.1016/j.atech.2023.100297
  61. Yao J, Liu J, Zhang Y, Wang H. Identification of winter wheat pests and diseases based on improved convolutional neural network. Open Life Sci. 2023;18(1):20220632. https://doi.org/10.1515/biol-2022-0632
  62. Ibarra GJP, Rosa CFJ, Arzola AO. Segmentation of leaves and fruits of tomato plants by color dominance. AgriEngineer. 2023;5(4):1846–64. https://doi.org/10.3390/agriengineering5040113
  63. Carraro A, Sozzi M, Marinello F. The Segment Anything Model (SAM) for accelerating the smart farming revolution. Smart Agri Technol. 2023;6:100367. https://doi.org/10.1016/j.atech.2023.100367
  64. Guadagna P, Fernandes M, Chen F, Santamaria A, Teng T, Frioni T, et al. Using deep learning for pruning region detection and plant organ segmentation in dormant spur-pruned grapevines Precision Agri. 2023;24(4):1547–69. https://doi.org/10.1007/s11119-023-10006-y
  65. Ampatzidis Y, Partel V, Meyering B, Albrecht U. Citrus rootstock evaluation utilizing UAV-based remote sensing and artificial intelligence. Computers and Electronics in Agri. 2019;164:104900. https://doi.org/10.1016/j.compag.2019.104900
  66. Chang C-L, Huang C-C, Chen H-W. Design and implementation of artificial intelligence of things for tea (Camellia sinensis L.) grown in a plant factory. Agron. 2022;12(10):2384. https://doi.org/10.3390/agronomy12102384
  67. Shinoda R, Motoki K, Hara K, Kataoka H, Nakano R, Nakazaki T, et al. RoseTracker: A system for automated rose growth monitoring. Smart Agri Technol. 2023;5:100271. https://doi.org/10.1016/j.atech.2023.100271
  68. Zhao J, Cai Y, Wang S, Yan J, Qiu X, Yao X, et al. Small and oriented wheat spike detection at the filling and maturity stages based on wheatnet. Plant Phenomics. 2023;5:0109. https://doi.org/10.34133/plantphenomics.0109
  69. Zhou S, Chai X, Yang Z, Wang H, Yang C, Sun T. Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping. Plant Methods. 2021;17(1):48. https://doi.org/10.1186/s13007-021-00747-0
  70. Makky M, Yanti D, Berd I. Development of aerial online intelligent plant monitoring system for oil palm (Elaeis guineensis Jacq.) performance to external stimuli. Intern JAdv Sci, Engineer and Information Technol. 2018;8(2):579–87. https://doi.org/10.18517/ijaseit.8.2.2297
  71. Saqib MA, Aqib M, Tahir MN, Hafeez Y. Towards deep learning based smart farming for intelligent weeds management in crops. Front in Plant Sci. 2023;14:1211235. https://doi.org/10.3389/fpls.2023.1211235
  72. Raja R, Slaughter DC, Fennimore SA, Siemens MC. Real-time control of high-resolution micro-jet sprayer integrated with machine vision for precision weed control. Biosystems Engineer. 2023;228:31–48. https://doi.org/10.1016/j.biosystemseng.2023.02.006
  73. Ather D, Madan S, Nayak M, Tripathi R, Kant R, Kshatri SS, et al. Selection of smart manure composition for smart farming using artificial intelligence technique. J Food Quality. 2022;2022(1):4351825. https://doi.org/10.1155/2022/4351825
  74. Hegazi EH, Samak AA, Yang L, Huang R, Huang J. Prediction of soil moisture content from sentinel-2 images using convolutional neural network (CNN). Agron. 2023;13(3):656. https://doi.org/10.3390/agronomy13030656
  75. Tüysüzo?lu G, Birant D, K?ranoglu V. Soil temperature prediction via self-training: Izmir case. J Agri Sci. 2022;28(1):47–62. https://doi.org/10.15832/ankutbd.775847
  76. Pereira GW, Valente DSM, Queiroz DMd, Coelho ALdF, Costa MM, Grift T. Smart-map: An open-source QGIS plugin for digital mapping using machine learning techniques and ordinary kriging. Agron. 2022;12(6):1350. https://doi.org/10.3390/agronomy12061350
  77. Chang L, Li D, Hameed MK, Yin Y, Huang D, Niu Q. Using a hybrid neural network model DCNN–LSTM for image-based nitrogen nutrition diagnosis in muskmelon. Horticulturae. 2021;7(11):489. https://doi.org/10.3390/horticulturae7110489
  78. Costa L, Kunwar S, Ampatzidis Y, Albrecht U. Determining leaf nutrient concentrations in citrus trees using UAV imagery and machine learning. Precision Agri. 2022;1–22.
  79. Torkashvand AM, Ahmadi A, Nikravesh NL. Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR). J Integrative Agri. 2017;16(7):1634–44. https://doi.org/10.1016/S2095-3119(16)61546-0
  80. González-Vidal A, Mendoza-Bernal J, Ramallo AP, Zamora MÁ, Martínez V, Skarmeta AF. Smart operation of climatic systems in a greenhouse. Agri. 2022;12(10):1729. https://doi.org/10.3390/agriculture12101729
  81. Hachimi CE, Belaqziz S, Khabba S, Sebbar B, Dhiba D, Chehbouni A. Smart weather data management based on artificial intelligence and big data analytics for precision agriculture. Agri. 2022;13(1):95. https://doi.org/10.3390/agriculture13010095
  82. Faid A, Sadik M, Sabir E. An agile AI and IoT-augmented smart farming: a cost-effective cognitive weather station. Agri. 2021;12(1):35. https://doi.org/10.3390/agriculture12010035
  83. Lee D-H, Kim H-J, Park J-H. UAV, a farm map and machine learning technology convergence classification method of a corn cultivation area. Agron. 2021;11(8):1554. https://doi.org/10.3390/agronomy11081554
  84. Ekanayake J, Saputhanthri L. E-AGRO: Intelligent chat-bot. IoT and artificial intelligence to enhance farming industry. Agris on-line Papers in Economics and Informatics. 2020;12(1):15–21. https://doi.org/10.7160/aol.2020.1200102
  85. De la Peña N, Granados OM. Artificial intelligence solutions to reduce information asymmetry for Colombian cocoa small-scale farmers. Information Processing in Agri. 2024;11(3):310–24. https://doi.org/10.1016/j.inpa.2023.03.001
  86. Mohammed M, Hamdoun H, Sagheer A. Toward sustainable farming: implementing artificial intelligence to predict optimum water and energy requirements for sensor-based micro irrigation systems powered by solar PV. Agron. 2023;13(4):1081. https://doi.org/10.3390/agronomy13041081
  87. Valipour M, Khoshkam H, Bateni SM, Jun C, Band SS. Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States. Agri Water Manage. 2023;283:108311. https://doi.org/10.1016/j.agwat.2023.108311
  88. Thuyet DQ, Matsuo M, Haji T, Kawaide T, Kobayashi Y. A numerical procedure for supporting garlic root trimming machines using deep learning algorithms. Engineer in Agri, Environ and Food. 2020;13(1):23–29. https://doi.org/10.37221/eaef.13.1_23
  89. Partel V, Costa L, Ampatzidis Y. Smart tree crop sprayer utilizing sensor fusion and artificial intelligence. Computers and Electronics in Agri. 2021;191:106556. https://doi.org/10.1016/j.compag.2021.106556

Downloads

Download data is not yet available.