Genotype-environment interaction (GEI) plays a critical role in genotype adaptation, making it essential for selecting stable, widely adapted genotypes for cultivation. GEI estimation enables the identification of genotypes that perform consistently across diverse conditions. Models and stability indices derived from fixed-effect and/or mixed-effect models are frequently utilized for analyzing GEI and selecting genotypes. In this study, thirty hybrids developed through a diallele fashion, along with two checks, were grown across three environments during kharif 2023. Analysis of variance revealed significant contributions from the environment and GEI, alongside genotypic effects for eight traits studied, covering flowering, plant architecture and yield. Plot yield (t/ha) was subjected to additive main effects and multiplicative interaction effects (AMMI) analysis to study the stability and genotype interactions with the environment. The first two principal components (PCs) of AMMI analysis explained 69.1% and 30.9% of the total variation, respectively, identifying stable hybrids such as MH-TN-15 and MH-TN-30. The Genotype-genotype×environment (GGE) biplot further highlighted the adaptability and stability of all the genotypes, with the first two PCs explaining 86.11% of the G+GE variation. A multi-trait stability index (MTSI) was employed to select stable and high-performing genotypes across multiple traits. A comprehensive analysis of all the genotypes through various indices showed that hybrids MH-TN-15 and MH-TN-30 were consistently selected as stable and high-yielding genotypes across all indices, demonstrating higher yields than check hybrids and being identified for cultivation. These methods underscore the importance of combining yield and stability metrics for effective genotype selection in varied environments.