Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Impact of newer insecticidal residue on mulberry silkworm, Bombyx mori L.

DOI
https://doi.org/10.14719/pst.6087
Submitted
23 October 2024
Published
18-04-2025
Versions

Abstract

The present study evaluated the impact of three insecticides, Chlorantraniliprole 18.5% SC at a dosage of 0.02%, Imidacloprid 17.80% SL at 0.05%, and Fipronil 5% SC at0.2%, on silkworm development, cocoon production, and silk quality. Cross-breed silkworms (PM × CSR2) were reared on insecticide-treated mulberry leaves, and parameters such as larval mortality, instar duration, cocoon yield, and silk denier were assessed. The results indicated that all insecticides reduced disease incidence and boosted cocoon yield but adversely affected silk quality. Chlorantraniliprole exhibited a slow yet steady impact, reducing the third instar duration from 88.7 hr at 10 days after spraying (DAS) to 83.54 hr at 25 DAS. On the other hand, Imidacloprid showed a faster effect, decreasing the third instar duration from 84.57 hr at 5 DAS to 72.45 hr at 25 DAS. Fipronil accelerated development, with the shortest instar duration among all treatments. Despite the increase in cocoon yield, the control groups (water spray and untreated) outperformed the insecticide-treated groups in silk quality, with the highest cocoon yield (150.98 g/100 cocoons) and silk denier (2.5) observed in the untreated group. The findings emphasized that although insecticides improve productivity and pest control, natural or minimally treated conditions favour high-quality silk production, advocating for a balanced approach to pest management in sericulture.

References

  1. 1. Li S, Jiang H, Qiao K, Gui W, Zhu G. Insights into the effect on silkworm (Bombyx mori) cocooning and its potential mechanisms following non-lethal dose tebuconazole exposure. Chemosphere. 2019;234:338‒45. https://doi.org/10.1016/j.chemosphere.2019.06.018
  2. 2. Sun X, Valk VDH, Jiang H, Wang X, Yuan S, Zhang Y, et al. Development of a standard acute dietary toxicity test for the silkworm (Bombyx mori L.). Crop Protect. 2012;42:260‒67. https://doi.org/10.1016/j.cropro.2012.07.009
  3. 3. Bandyopadhyay UK, Santhakumar MV, Saratchandra B. Role of insecticides and botanicals in regulating whitefly (Dialeuropora decempuncta) incidence and their influence on some economic traits of silkworm (Bombyx mori L.). Ann Plant Protect Sci. 2005;13(1):48‒53. https://doi.org/10.54302/apss.2005.v13i1.2941
  4. 4. Kumari VN. Ecofriendly technologies for disease and pest management in mulberry-A review. IOSR J Agri and Veterinary Sci. 2014;7(2):1‒6. https://doi.org/10.9790/2380-07210106
  5. 5. Rattanapan A, Sujayanont P. Impact of neem seed extract on mortality, esterase and glutathione-s-transferase activities in Thai polyvoltine hybrid silkworm, Bombyx mori L. Insects. 2024;15(8):591. https://doi.org/10.3390/insects15080591
  6. 6. Chen Q, Sun S, Yang X, Yan H, Wang K, Ba X et al.. Sublethal effects of neonicotinoid insecticides on the development, body weight and economic characteristics of silkworm. Toxics. 2023;11(5):402. https://doi.org/10.3390/toxics11050402
  7. 7. Vassarmidaki ME, Harizanis PC, Katsikis S. Effects of applaud on the growth of silkworm (Lepidoptera: Bombycidae). J Economic Entomol. 2000;93(2):290‒92. https://doi.org/10.1603/0022-0493-93.2.290
  8. 8. Munhoz RE, Bignotto TS, Pereira NC, das Neves Saez CR, Bespalhuk R, Pessini GM, et al. Evaluation of the toxic effect of insecticide chlorantraniliprole on the silkworm Bombyx mori (Lepidoptera: Bombycidae). Open J Animal Sci. 2013;3(4):343. https://doi.org/10.4236/ojas.2013.34050
  9. 9. Yu RX, Wang YH, Hu XQ, Wu SG, Cai LM, Zhao XP. Individual and joint acute toxicities of selected insecticides against Bombyx mori (Lepidoptera: Bombycidae). J Econo Entomol. 2016;109(1):327‒33. https://doi.org/10.1093/jee/tov326
  10. 10. Kumar TS, KP NR. Studies on toxicological effect of new generation insecticides Chlorantriniliprole, Flubendiamide Imidacloprid in rearing performance of mulberry silkworm, Bombyx mori L. Int J Pure App Biosci. 2017;5(6):252‒57. https://doi.org/10.18782/2320-7051.5914
  11. 11. Stanley J, Preetha G. Pesticide toxicity to silkworms: exposure, toxicity and risk assessment methodologies. Pesticide Toxicity to Non-target Organisms: Exposure, Toxicity and Risk Assessment Methodologies; 2016. 229‒75. https://doi.org/10.1007/978-94-017-7752-0_11
  12. 12. Hazarika S, Jekinakatti B, Bharathi BKM, Charitha K. Impact of novel insecticides in mulberry ecosystem and its residual effect on silkworm growth and productivity. J Experi Agri Inter. 2024;46(9):37–44. https://doi.org/10.9734/jeai/2024/v46i92860
  13. 13. Chi Y, Qiao K, Jiang H, Lin R, Wang K. Comparison of two acute toxicity test methods for the silkworm (Lepidoptera: Bombycidae). J Econo Entomol. 2015;108(1):145‒49. https://doi.org/10.1093/jee/tou017
  14. 14. Saad MS, Helaly WM, El-Sheikh ES. Biological and physiological effects of pyriproxyfen insecticide and amino acid glycine on silkworm, Bombyx mori L. Bull Nat Res Centre. 2019;43:1‒7. https://doi.org/10.1186/s42269-019-0061-1
  15. 15. Kalita MK, Haloi K, Devi D. Larval exposure to chlorpyrifos affects nutritional physiology and induces genotoxicity in silkworm Philosamia ricini (Lepidoptera: Saturniidae). Front Physiol. 2016;7:535.https://doi.org/10.3389/fphys.2016.00535
  16. 16. Nath BS, Kumar RS. Toxic impact of organophosphorus insecticides on acetylcholinesterase activity in the silkworm, Bombyx mori L. Ecotoxicol and Environ Safety. 1999;42(2):157‒62.https://doi.org/10.1006/eesa.1998.1744
  17. 17. Buhroo ZI, Bhat MA, Ganai NA. Genotoxic effects of endosulfan an orgnaochlorine pesticide on the silkworm Bombyx mori L. Int J Appl Res. 2016;2(10):235‒53. https://doi.org/10.22271/allresearch.2016.v2.i10d.2708
  18. 18. Ramakrishna S, Nath BS. Evaluation of relative fluoride toxicity and its impact on growth, economic characters and fecundity of the silkworm, Bombyx mori L. Inter J Indust Entomol. 2004;8(2):151‒59.https://doi.org/10.7852/ijie.2004.8.2.151
  19. 19. El Sherif DF, Soliman NH. Adverse effects of chlorfenapyr and chlorantraniliprole on silkworm Bombyx more L. parameters and reduction of their effects using ascorbic acid. Fayoum J Agri Res and Develop. 2024;38(4):413‒23. https://fjard.journals.ekb.eg/article_313091.html
  20. 20. Ren J, Zhang M, Chen L, Tan L, Yi Y. Screening of chemical insecticides against Diaghania pyloalis. In: IOP Conference Series: Earth and Environmental Science; 2020. 615(1):012092. IOP Publishing. https://doi.org/10.1088/1755-1315/615/1/012092
  21. 21. Fan Z, Chen L, Ren J, Tan L, Zeng X, Chen Q, et al. Screening of effective insecticides against Diaghania pyloalis in mulberry fields. In: BIO Web of Conferences; 2023. 60:02013. EDP Sciences. https://doi.org/0.1051/bioconf/20236002013
  22. 22. Hassanein M, Abdalla Y, Abdelmegeed SM. Some natural and chemical compounds directly affect pests of mulberry trees and their side effects on silkworm larvae. Arab Univers J Agri Sci. 2024;32(1):121‒28. https://doi.org/10.21608/ajs.2023.174180.1508
  23. 23. Kalita MK, Devi D. Immunomodulatory effect of chlorpyrifos formulation (Pyrifos-20 EC) on Philosamia ricini (Lepidoptera: Saturniidae). J Entomol Zool Stud. 2016;4(6):26‒31.www.entomoljournal.com/archives/?year=2016&vol=4&issue=6
  24. 24. Chen H, Yang L, Zhou J, Liu P, Zhu S, Li Y, et al. Enhanced insecticidal activity of chlorfenapyr against Spodoptera frugiperda by reshaping the intestinal microbial community and interfering with the metabolism of iron-based metal–organic frameworks. ACS Appl Materials and Interfaces. 2023;15(30):36036‒51. https://doi.org/10.1021/acsami.3c06252
  25. 25. Copping LG, Menn JJ. Biopesticides: a review of their action, applications and efficacy. Pest Manage Sci: Formerly Pesticide Sci. 2000;56(8):651‒76. https://doi.org/10.1002/1526-4998(200008)

Downloads

Download data is not yet available.