Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 1 (2025)

Climatic and edaphic influences on productivity and carbon sequestration of farm grown teak (Tectona grandis, linn.f) in Tamil Nadu, India

DOI
https://doi.org/10.14719/pst.6090
Submitted
23 October 2024
Published
27-12-2024 — Updated on 01-01-2025
Versions

Abstract

Teak (Tectona grandis, Linn.f) is one of the most sought-after tree crops due to the exceptional quality and high market value of its timber. Currently, the Indian subcontinent imports a significant quantity of teak to meet its growing demand. The growth and wood quality of teak are influenced by edaphic and climatic variations across sites, a factor that has been largely underexplored in research. The primary objective of the study is to analyse teak growth, wood quality, and carbon sequestration potential under farmland condition.  To address this, the study was conducted across three agroclimatic zones of Tamil Nadu: North Eastern Zone (NEZ), North Western Zone (NWZ), and Cauvery Delta Zone (CDZ), focusing specifically on farmland conditions. The analysis encompassed biometric attributes, volume, and carbon sequestration potential of farm-grown teak across different age classes. The findings of the study reveal that among the three agroclimatic zones, the NEZ (15-20 years age class) recorded the highest biometric attributes, including mid diameter (MD) (0.193 m), volume (0.379 m3), heartwood proportion (0.239 m3), and carbon sequestration (0.683 Mg/acre).. Based on the overall performance, trees in the 15-20 years age class exhibited superior heartwood formation under farmland conditions. Therefore, this age class is   recommended for teak cultivation in farmland conditions across Tamil Nadu to maximize growth, wood quality, and carbon sequestration potential.

References

  1. 1. Balakrishnan S, Dev SA, Sakthi AR, Vikashini B, Bhasker TR, Magesh NS, Ramasamy Y. Gene-ecological zonation and population genetic structure of Tectona grandis Lf in India revealed by genome-wide SSR markers. Tree Genet Genomes. 2021 Aug;17:1‒4. https://doi.org/10.1007/s11295-021-01514-x
  2. 2. Kidanu S, Mamo T, Stroosnijder L. Biomass production of Eucalyptus boundary plantations and their effect on crop productivity on Ethiopian highland Vertisols. Agrofor Syst. 2005 Jun;63:281‒90. https://doi.org/10.1007/s10457-005-5169-z
  3. 3. Vongkhamho S, Imaya A, Yamamoto K, Takenaka C, Yamamoto H. Influence of topographic conditions on teak growth performance in mountainous landscapes of Lao PDR. Forests. 2022 Jan 14;13(1):118. https://doi.org/10.3390/f13010118
  4. 4. Deb JC, Phinn S, Butt N, McAlpine CA. Climatic-induced shifts in the distribution of teak (Tectona grandis) in tropical Asia: Implications for forest management and planning. Environ Manag. 2017 Sep;60:422‒35. https://doi.org/10.1007/s00267-017-0884-6
  5. 5. Ridder RM. Global forest resources assessment 2010: options and recommendations for a global remote sensing survey of forests. FAO For Resour Assess Programme Work Pap. 2007 Mar;141.
  6. 6. Kollert W, Cherubini L. Teak resources and market assessment 2010. FAO Planted Forests and Trees Working Paper FP/47/E, Rome. 2012 Apr;206. Available from: http://www.fao.org/forestry/plantedforests/67508@170537/en/
  7. 7. Shrivastava S, Saxena AK. Wood is good: But, is India doing enough to meet its present and future needs. Centre for Science and Environment, New Delhi; 2017. 13.
  8. 8. Pandey D, Brown C. Teak: a global overview. UNASYLVA-FAO. 2000 Jan 1; 3‒13. Available from: http://www. apps.fao.org
  9. 9. Sani Lookose SL. Traditional teak wood articles used in households of Nilambur and Malapuram areas of Kerala. http://nopr.niscpr.res.in/handle/123456789/581
  10. 10. Miranda I, Sousa V, Pereira H. Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor. J Wood Sci. 2011 Jun;57:171‒78. https://doi.org/10.1007/s10086-010-1164-8
  11. 11. Palanisamy K, Hegde M, Yi JS. Teak (Tectona grandis Linn. f.): A renowned commercial timber species. J For Environ Sci. 2009;25(1):1‒24.
  12. 12. Arunachalam B, Natarajan HP, Satheesan A, Ganesan S, Suthandhirajan R, Muthuswamy S, et al. Yield model and yield table construction in Albizia (Albizia lebbeck L.) under the western agro-climatic zone of Tamil Nadu, Southern India. Environ Sci Pollut Res Int. 2024 Jun;31(27):38781‒87. https://doi.org/10.1007/s11356-023-29716-x
  13. 13. Buvaneswaran C, George M, Perez D, Kanninen M. Biomass of teak plantations in Tamil Nadu, India and Costa Rica compared. J Trop For Sci. 2006 Jul 1;18(3):195‒97.
  14. 14. Shukla SR, Viswanath S. Comparative study on growth, wood quality and financial returns of teak (Tectona grandis Lf) managed under three different agroforestry practices. Agrofor Syst. 2014 Apr;88:331‒41. https://doi.org/10.1007/s10457-014-9686-5
  15. 15. Sreejesh KK, Thomas TP, Rugmini P, Prasanth KM, Kripa PK. Carbon sequestration potential of teak (Tectona grandis) plantations in Kerala. Res J Recent Sci ISSN. 2013;2277:2502.
  16. 16. Wiemann MC, Williamson GB. Geographic variation in wood specific gravity: effects of latitude, temperature and precipitation. Wood Fiber Sci. 2002;96‒107.
  17. 17. Ravi J, Radhakrishnan S, Balasubramanian A. Construction of yield model for Ailanthus excelsa grown in Cauvery delta agro climatic zone of Tamil Nadu, India. Int J Chem Stud. 2018;7:3852‒54.
  18. 18. Raviperumal A, Balasubramanian A, Manivasakam S, Prasath CH, Krishnan MS. Yield model construction in neem (Azadirachta indica) under western agro climatic zone of Tamil Nadu, Southern India. Res Sq. 2018;1‒4.
  19. 19. Zahabu E, Raphael T, Chamshama SA, Iddi S, Malimbwi RE. Effect of spacing regimes on growth, yield and wood properties of Tectona grandis at Longuza forest plantation, Tanzania. Int J For Res. 2015;2015(1):469760. https://doi.org/10.1155/2015/469760
  20. 20. Rajan LJ, Ramanan SS, Anoop EV. Physical and anatomical-wood properties variation among the provenances of red sanders (Pterocarpus santalinus). Indian J Hill Farm. 2019;32(1).
  21. 21. Mendiburu FD, Simon R. Agricolae-Ten years of an open-source statistical tool for experiments in breeding, agriculture and biology. Peer J PrePrints. 2015. https://dx.doi.org/10.7287/peerj.preprints.1404v1
  22. 22. Tewari VP, Mariswamy KM. Heartwood, sapwood and bark content of teak trees grown in Karnataka, India. J For Res. 2013 Dec;24:721‒25. https://doi.org/10.1007/s11676-013-0410-5
  23. 23. Naidu LG, Ramamurthy V, Srinivas S, Natarajan A, Thayalan S. Delineation of agro-ecological zones of Tamilnadu. Agropedology. 2013;23(2):83‒92.
  24. 24. Reddy MC, Madiwalar SL. Productivity assessment and economic analysis of teak plantations in different agro climatic zones of Karnataka. Indian For. 2014 Jul 9;140(3):287‒90. https://doi.org/10.12944/CWE.9.3.27
  25. 25. Odusote JK, Adeleke AA, Lasode OA, Malathi M, Paswan D. Thermal and compositional properties of treated Tectona grandis. Biomass Convers Biorefin. 2019 Sep 1;9:511‒19. https://doi.org/10.1007/s13399-019-00398-1
  26. 26. Balasooriya B, Amarasinghe W, Weerakkody W, Muthumala C. Development of bucking techniques to improve timber grading of teak (Tectona grandis). In: Proceedings of 19th Agricultural Research Symposium; 2020. 525:29.
  27. 27. Priya PB, Bhat KM. False ring formation in teak (Tectona grandis Lf) and the influence of environmental factors. For Ecol Manage. 1998 Aug 26;108(3):215‒22. https://doi.org/10.1016/S0378-1127(98)00227-8
  28. 28. Subba S, Honnurappa S. Exploring carbon sequestration potential across various clones in teak plantation. Int J Econ Plants. 2024 Feb 26;11 (Feb 1):56‒59. https://doi.org/10.23910/2/2024.5121
  29. 29. Rahmawati RB, Hardiwinoto S, Wibowo A. Productivity of clonal teak plantation under different spacing and thinning intensity in Java monsoon forest. In: IOP Conference Series: Earth and Environmental Science; IOP Publishing; 2024 Feb 1. 1299(1): 012004. https://doi.org/10.1088/1755-1315/1299/1/012004

Downloads

Download data is not yet available.