Research Articles
Vol. 12 No. 2 (2025)
A systematic literature review on artificial intelligence in transforming precision agriculture for sustainable farming: Current status and future directions
Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India ; Tomato Breeding, World Vegetable Center, Tainan 74151, Taiwan
Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Centre for Water and Geospatial Studies, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Abstract
Agriculture encounters significant challenges, with the demand to increase food production by 50% by 2050 to sustain a growing global population while tackling the impacts of climate change and resource scarcity. Artificial intelligence (AI) has transformative potential for precision agriculture, optimizing crop management, resource allocation and sustainable farming practices. A systematic literature review (SLR) was conducted using the Scopus database, initially identifying 8145 articles. Based on eligibility criteria, 76 were selected for in-depth analysis. This paper focuses on AI applications in key areas of agriculture, including crop monitoring, irrigation management, weed and pest control, yield prediction, and smart spraying technologies. AI-driven techniques, such as machine learning, computer vision, robotics and the Internet of Things (IoT), enhance agricultural productivity and sustainability through data-driven decision-making and real-time monitoring. AI-based irrigation systems optimize water use efficiency by integrating sensor inputs with weather data, while robotic technologies enhance targeted weed and pest management. Resource efficiency is further enhanced by smart sprayers and yield estimation techniques. Despite these advancements, research gaps remain, particularly in integrating AI with emerging fields such as nutrient management and expanding the use of sensor systems. This paper highlights advancements in AI for precision agriculture, including crop monitoring, irrigation management and yield prediction, while identifying gaps in areas like nutrient management and sensor integration. Addressing these gaps is essential for developing more sustainable and resilient agricultural systems.
References
- FAO. The future of food and agriculture – Alternative pathways to 2050 [Internet]. Rome; 2018 [cited 2024 Oct 29]. https://www.fao.org/3/I8429EN/i8429en.pdf
- Jaramillo-Hernández JF, Julian V, Marco-Detchart C, Rincón JA. Application of machine vision techniques in low-cost devices to improve efficiency in precision farming. sensors. 2024;24(3). https://doi.org/10.3390/s24030937
- Alexander CS, Yarborough M, Smith A. Who is responsible for ‘responsible AI’?: Navigating challenges to build trust in AI agriculture and food system technology. Precis Agric. 2024;25(1):146–185. https://doi.org/10.1007/s11119-023-10063-3
- Government of India. Press Information Bureau. 2022. Use of drones in agriculture. https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1842784
- Food and Agriculture Organization of the United Nations. E-agriculture in action: Drones for agriculture. [Internet]. Rome; 2017. https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1234537/
- Saiz-Rubio V, Rovira-Más F, Cuenca-Cuenca A, Alves F. Robotics-based vineyard water potential monitoring at high resolution. Comput Electron Agric. 2021;187. https://doi.org/10.1016/j.compag.2021.106311
- Raja R, Slaughter DC, Fennimore SA, Siemens MC. Real-time control of high-resolution micro-jet sprayer integrated with machine vision for precision weed control. Biosyst Eng. 2023;228:31–48. https://doi.org/10.1016/j.biosystemseng.2023.02.006
- Zeng YF, Chen CT, Lin GF. Practical application of an intelligent irrigation system to rice paddies in Taiwan. Agric Water Manag. 2023;280. https://doi.org/10.1016/j.agwat.2023.108216
- Bancheri M, Basile A, Terribile F, Langella G, Botta M, Lezzi D, et al. A web-based operational tool for the identification of best practices in European agricultural systems. Land Degrad Dev. 2024;35(13):3965–80. https://doi.org/10.1002/ldr.5114
- Sharma A, Sharma A, Tselykh A, Bozhenyuk A, Choudhury T, Alomar MA, et al. Artificial intelligence and internet of things oriented sustainable precision farming: Towards modern agriculture. Open Life Sci. 2023;18(1). https://doi.org/10.1515/biol-2022-0713
- Mengist W, Soromessa T, Legese G. Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Sci Total Environ. 2020;702:134581. https://doi.org/10.1016/j.scitotenv.2019.134581
- Mohammed SP, Natarajan S, Eybishitz A, Jakkula D, Veerasamy R, Prasanthrajan M, et al. Heat stress in tomato plants: current challenges and future directions for sustainable agriculture. N Z J Crop Hortic Sci. 2024:1–25. https://doi.org/10.1080/01140671.2024.2432624
- Addas A, Tahir M, Ismat N. Enhancing precision of crop farming towards smart cities: An application of artificial intelligence. Sustainability (Switzerland). 2024;16(1). https://doi.org/10.3390/su16010355
- Vasileiou M, Kyrgiakos LS, Kleisiari C, Kleftodimos G, Vlontzos G, Belhouchette H, et al. Transforming weed management in sustainable agriculture with artificial intelligence: A systematic literature review towards weed identification and deep learning. Crop Prot. 2024;176. https://doi.org/10.1016/j.cropro.2023.106522
- Gerhards R, Risser P, Spaeth M, Saile M, Peteinatos G. A comparison of seven innovative robotic weeding systems and reference herbicide strategies in sugar beet (Beta vulgaris subsp. vulgaris L.) and rapeseed (Brassica napus L.). Weed Res. 2024;64(1):42–53. https://doi.org/10.1111/wre.12603
- Kiti? G, Krklješ D, Pani? M, Petes C, Birgermajer S, Crnojevi? V. Agrobot Lala—An autonomous robotic system for real-time, in-field soil sampling and analysis of nitrates. Sensors. 2022;22(11). https://doi.org/10.3390/s22114207
- de Lima J de JA, Maldaner LF, Molin JP. Sensor fusion with NARX neural network to predict the mass flow in a sugarcane harvester. Sensors. 2021;21(13). https://doi.org/10.3390/s21134530
- Salamai AA, Al-Nami WT. Sustainable coffee leaf diagnosis: A deep knowledgeable meta-Learning approach. Sustainability (Switzerland). 2023;15(24). https://doi.org/10.3390/su152416791
- Falcioni R, Gonçalves JVF, Oliveira KM de, Oliveira CA de, Demattê JAM, Antunes WC, et al. Enhancing pigment phenotyping and classification in lettuce through the integration of reflectance spectroscopy and AI algorithms. Plants. 2023;12(6). https://doi.org/10.3390/plants12061333
- Lee J, Nazki H, Baek J, Hong Y, Lee M. Artificial intelligence approach for tomato detection and mass estimation in precision agriculture. Sustainability (Switzerland). 2020;12(21):9138. https://doi.org/10.3390/su12219138
- Caldeira RF, Santiago WE, Teruel B. Identification of cotton leaf lesions using deep learning techniques. Sensors. 2021;21(9). https://doi.org/10.3390/s21093169
- López-Martínez M de J, Díaz-Flórez G, Villagrana-Barraza S, Castañeda-Miranda CL, Solís-Sánchez LO, Ortíz-Esquivel DI, et al. Pattern classification of an onion crop (Allium Cepa) field using convolutional neural network models. Agronomy. 2024;14(6). https://doi.org/10.3390/agronomy14061206
- Neri I, Caponi S, Bonacci F, Clementi G, Cottone F, Gammaitoni L, et al. Real-Time AI-assisted push-broom hyperspectral system for precision agriculture. Sensors. 2024;24(2). https://doi.org/10.3390/s24020344
- Singh RK, Rahmani MH, Weyn M, Berkvens R. Joint communication and sensing: A proof of concept and datasets for greenhouse monitoring using LoRaWAN. Sensors. 2022;22(4). https://doi.org/10.3390/s22041326
- Osman Y, Dennis R, Elgazzar K. Yield estimation and visualization solution for precision agriculture. Sensors. 2021;21(19). https://doi.org/10.3390/s21196657
- Chang L, Li D, Hameed MK, Yin Y, Huang D, Niu Q. Using a hybrid neural network model DCNN-LSTMD for image-based nitrogen nutrition diagnosis in muskmelon. Horticulturae. 2021;7(11). https://doi.org/10.3390/horticulturae7110489
- Dong X, Wang Q, Huang Q, Ge Q, Zhao K, Wu X, et al. PDDD-PreTrain: A series of commonly used pre-trained models support image-based plant disease diagnosis. Plant Phenomics. 2023;5. https://doi.org/10.34133/plantphenomics.0054.
- Partel V, Costa L, Ampatzidis Y. Smart tree crop sprayer utilizing sensor fusion and artificial intelligence. Comput Electron Agric. 2021;191. https://doi.org/10.1016/j.compag.2021.106556
- Moon T, Kim D, Kwon S, Ahn TI, Son JE. Non-destructive monitoring of crop fresh weight and leaf area with a simple formula and a convolutional neural network. Sensors (Basel). 2022;22(20). https://doi.org/10.3390/s22207728
- Siedliska A, Baranowski P, Pastuszka-Wo?niak J, Zubik M, Krzyszczak J. Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance. BMC Plant Biol. 2021;21(1). https://doi.org/10.1186/s12870-020-02807-4
- Costa L, Kunwar S, Ampatzidis Y, Albrecht U. Determining leaf nutrient concentrations in citrus trees using UAV imagery and machine learning. Precis Agric. 2022;23(3):854–75. https://doi.org/10.1007/s11119-021-09864-1
- Dolaptsis K, Pantazi XE, Paraskevas C, Arslan S, Tekin Y, Bantchina BB, et al. A hybrid LSTM approach for irrigation scheduling in maize crop. Agriculture (Switzerland). 2024;14(2). https://doi.org/10.3390/agriculture14020210
- Munnaf MA, Mouazen AM. An automated system of soil sensor-based site-specific seeding for silage maize: A proof of concept. Comput Electron Agric. 2023;209:107872. https://doi.org/10.1016/j.compag.2023.107872
- Wiegman CR, Venkatesh R, Shearer SA. Intra-canopy sensing using multi-rotors UAS: A new approach for crop stress detection and diagnosis. J ASABE. 2022;65(4):913–25. https://doi.org/10.13031/ja.14342
- Hasan ASMM, Diepeveen D, Laga H, Jones MGK, Sohel F. Image patch-based deep learning approach for crop and weed recognition. Ecol Inform. 2023;78. https://doi.org/10.1016/j.ecoinf.2023.102361
- Eron F, Noman M, Ricon de Oliveira R, Chalfun-Junior A. Computer vision-aided intelligent monitoring of coffee: Towards sustainable coffee Production. Sci Hortic. 2024;327:112847. https://doi.org/10.1016/j.scienta.2024.112847
- de Lima Silva YK, Furlani CEA, Canata TF. AI-based prediction of carrot yield and quality on tropical agriculture. AgriEngineering. 2024;6(1):361–74. https://doi.org/10.3390/agriengineering6010022
- Hachimi C El, Belaqziz S, Khabba S, Sebbar B, Dhiba D, Chehbouni A. Smart weather data management based on artificial intelligence and big data analytics for precision agriculture. Agriculture (Switzerland). 2023;13(1). https://doi.org/10.3390/agriculture13010095
- Abdulridha J, Ampatzidis Y, Qureshi J, Roberts P. Identification and classification of Downy Mildew severity stages in watermelon utilizing aerial and ground remote sensing and machine learning. Front Plant Sci. 2022;13. https://doi.org/10.3389/fpls.2022.791018
- Linaza MT, Posada J, Bund J, Eisert P, Quartulli M, Döllner J, et al. Data-driven artificial intelligence applications for sustainable precision agriculture. Agronomy. 2021;11(6). https://doi.org/10.3390/agronomy11061227
- Zu D, Zhang F, Wu Q, Lu C, Wang W, Chen X. Sundry bacteria contamination identification of Lentinula edodes logs based on deep learning model. Agronomy. 2022;12(9). https://doi.org/10.3390/agronomy12092121
- Md-Tahir H, Mahmood HS, Husain M, Khalil A, Shoaib M, Ali M, et al. Localized crop classification by NDVI time series analysis of remote sensing satellite data; applications for mechanization strategy and integrated resource management. Agri Engineering. 2024;6(3):2429–44. https://doi.org/10.3390/agriengineering6030142
- Fathy C, Ali HM. A secure IoT-based irrigation system for precision agriculture using the expeditious cipher. Sensors. 2023;23(4). https://doi.org/10.3390/s23042091
- Sami M, Khan SQ, Khurram M, Farooq MU, Anjum R, Aziz S, et al. A deep learning-based sensor modeling for smart irrigation system. Agronomy. 2022;12(1). https://doi.org/10.3390/agronomy12010212
- Rozenstein O, Cohen Y, Alchanatis V, Behrendt K, Bonfil DJ, Eshel G, et al. Data-driven agriculture and sustainable farming: friends or foes?. Precis Agric. 2024;25(1):520–31. https://doi.org/10.1007/s11119-023-10061-5
- Li R, He Y, Li Y, Qin W, Abbas A, Ji R, et al. Identification of cotton pest and disease based on CFNet- VoV-GCSP -LSKNet-YOLOv8s: a new era of precision agriculture. Front Plant Sci. 2024;15. https://doi.org/10.3389/fpls.2024.1348402
- Gardezi M, Joshi B, Rizzo DM, Ryan M, Prutzer E, Brugler S, et al. Artificial intelligence in farming: Challenges and opportunities for building trust. Agron J. 2024;116(3):1217–28. https://doi.org/10.1002/agj2.21353
- Ferraz MAJ, Barboza TOC, De Sousa AP, Von Pinho RG, Santos AFD. Integrating satellite and UAV technologies for maize plant height estimation using advanced machine learning. Agri Engineering. 2024;6(1):20–33. https://doi.org/10.3390/agriengineering6010002
- Vijayakumar V, Ampatzidis Y, Costa L. Tree-level citrus yield prediction utilizing ground and aerial machine vision and machine learning. Smart Agric Technol. 2023;3. https://doi.org/10.1016/j.atech.2022.100077
- Kim HT, AlZubi AA. AI-enhanced precision irrigation in legume farming: Optimizing water use efficiency. Legume Res. 2024;47(8):1382–89. https://doi.org/10.18805/lrf-791
- Xie S, Bai Y, An Q, Song J, Tang X, Xie F. Identification system of tomato leaf diseases based on optimized MobileNetV2 INMATEH. Agric Eng. 2022;68(3):589–98. http://dx.doi.org/10.35633/inmateh-68-58.
- Íñiguez R, Gutiérrez S, Poblete-Echeverría C, Hernández I, Barrio I, Tardáguila J. Deep learning modelling for non-invasive grape bunch detection under diverse occlusion conditions. Comput Electron Agric. 2024;226. https://doi.org/10.1016/j.compag.2024.109421
- Liu LW, Lu CT, Wang YM, Lin KH, Ma X, Lin WS. Rice (Oryza sativa L.) growth modeling based on growth degree day (GDD) and artificial intelligence algorithms. Agriculture (Switzerland). 2022;12(1). https://doi.org/10.3390/agriculture12010059
- Beloev I, Kinaneva D, Georgiev G, Hristov G, Zahariev P. Artificial intelligence-driven autonomous robot for precision agriculture. Acta Technol Agric. 2021;24(1):48–54. http://dx.doi.org/10.2478/ata-2021-0008
- Musanase C, Vodacek A, Hanyurwimfura D, Uwitonze A, Kabandana I. Data-driven analysis and machine learning-based crop and fertilizer recommendation system for revolutionizing farming practices. Agriculture (Switzerland). 2023;13(11). https://doi.org/10.3390/agriculture13112141
- Neményi M, Ambrus B, Teschner G, Alahmad T, Nyéki A, Kovács AJ. Challenges of ecocentric sustainable development in agriculture with special regard to the internet of things (IoT), an ICT perspective. Prog Agric Eng Sci. 2023;19(1):113–22. https://doi.org/10.1556/446.2023.00099
- Khalid H, Hashim SJ, Ahmad SMS, Hashim F, Chaudhary MA. Robust multi-gateway authentication scheme for agriculture wireless sensor network in society 5.0 smart communities. Agriculture (Switzerland). 2021;11(10). https://doi.org/10.3390/agriculture11101020
- Foster L, Szilagyi K, Wairegi A, Oguamanam C, de Beer J. Smart farming and artificial intelligence in East Africa: Addressing indigeneity, plants and gender. Smart Agric Technol. 2023;3. https://doi.org/10.1016/j.atech.2022.100132
- Khan H, Haq IU, Munsif M, Mustaqeem, Khan SU, Lee MY. Automated wheat diseases classification framework using advanced machine learning technique. Agriculture (Switzerland). 2022;12(8). https://doi.org/10.3390/agriculture12081226
- Emmi L, Fernández R, Gonzalez-de-Santos P, Francia M, Golfarelli M, Vitali G, et al. Exploiting the internet resources for autonomous robots in agriculture. Agriculture (Switzerland). 2023;13(5). https://doi.org/10.3390/agriculture13051005
- Rai N, Zhang Y, Ram BG, Schumacher L, Yellavajjala RK, Bajwa S, et al. Applications of deep learning in precision weed management: A review. Comput Electron Agric. 2023;206. https://doi.org/10.1016/j.compag.2023.107698
- Sassu A, Motta J, Deidda A, Ghiani L, Carlevaro A, Garibotto G, et al. Artichoke deep learning detection network for site-specific agrochemicals UAS spraying. Comput Electron Agric. 2023;213. https://doi.org/10.1016/j.compag.2023.108185
- Deng B, Lu Y, Xu J. Weed database development: An updated survey of public weed datasets and cross-season weed detection adaptation. Ecol Inform. 2024;81:102546. https://doi.org/10.1016/j.ecoinf.2024.102546
- Storm H, Seidel SJ, Klingbeil L, Ewert F, Vereecken H, Amelung W, et al. Research priorities to leverage smart digital technologies for sustainable crop production. Eur J Agron. 2024;156. https://doi.org/10.1016/j.eja.2024.127178
- Subbarayudu C, Kubendiran M. A comprehensive survey on machine learning and deep learning techniques for crop disease prediction in smart agriculture. Nat Environ Pollut Technol. 2024;23(2):619–32. http://dx.doi.org/10.46488/NEPT.2024.v23i02.003
- Bütüner AK, ?ahin YS, Erdinç A, Erdo?an H, Lewis E. Enhancing pest detection: Assessing Tuta absoluta (Lepidoptera: Gelechiidae) damage intensity in field images through advanced machine learning. Tarim Bilimleri Derg. 2024;30(1):99–107. https://doi.org/10.15832/ankutbd.1308406
- Preite L, Vignali G. Artificial intelligence to optimize water consumption in agriculture: A predictive algorithm-based irrigation management system. Comput Electron Agric. 2024;223. https://doi.org/10.1016/j.compag.2024.109126
- Visentin F, Cremasco S, Sozzi M, Signorini L, Signorini M, Marinello F, et al. A mixed-autonomous robotic platform for intra-row and inter-row weed removal for precision agriculture. Comput Electron Agric. 2023;214. https://doi.org/10.1016/j.compag.2023.108270
- Russo C, Cirillo V, Esposito M, Lentini M, Pollaro N, Maggio A. Convolutional neural network for the early identification of weeds: A technological support to biodiversity and yield losses mitigation. Smart Agric Technol. 2024;9. https://doi.org/10.1016/j.atech.2024.100594
- Yousefi DBM, Mohd Rafie AS, Abd Aziz S, Azrad S, Mazmira Mohd MM, Shahi A, et al. Classification of oil palm female inflorescences anthesis stages using machine learning approaches. Inf Process Agric. 2021;8(4):537–49. https://doi.org/10.1016/j.inpa.2020.11.007
- Bono A, Marani R, Guaragnella C, D’Orazio T. Biomass characterization with semantic segmentation models and point cloud analysis for precision viticulture. Comput Electron Agric. 2024;218. https://doi.org/10.1016/j.compag.2024.108712
- Giménez-Gallego J, González-Teruel JD, Soto-Valles F, Jiménez-Buendía M, Navarro-Hellín H, Torres-Sánchez R. Intelligent thermal image-based sensor for affordable measurement of crop canopy temperature. Comput Electron Agric. 2021;188. https://doi.org/10.1016/j.compag.2021.106319
- Ferrarezi RS, Peng TW. Smart system for automated irrigation using internet of things devices. Hort Technology. 2021;31(6):642–49. https://doi.org/10.21273/horttech04860-21
- Ampatzidis Y, Partel V, Costa L. Agroview: Cloud-based application to process, analyze and visualize UAV-collected data for precision agriculture applications utilizing artificial intelligence. Comput Electron Agric. 2020;174. https://doi.org/10.1016/j.compag.2020.105457
- Shao Y, Yang W, Wang J, Lu Z, Zhang M, Chen D. Cotton disease recognition method in natural environment based on convolutional neural network. Agriculture (Switzerland). 2024 Sep 1;14(9). https://doi.org/10.3390/agriculture14091577
- Partel V, Charan KS, Ampatzidis Y. Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput Electron Agric. 2019;157: 339–50. https://doi.org/10.1016/j.compag.2018.12.048
- Kanwal T, Rehman SU, Ali T, Mahmood K, Villar SG, Lopez LAD, et al. An intelligent dual-axis solar tracking system for remote weather monitoring in the agricultural field. Agriculture (Switzerland). 2023;13(8). https://doi.org/10.3390/agriculture13081600
- Ogawa S, Gomez SM, Ishitani M. Crop development with data-driven approach towards sustainable agriculture: Lifting the achievements and opportunities of collaborative research between CIAT and Japan. Jpn Agric Res Q (JARQ). 2021;55(Special):463–72. https://doi.org/10.6090/jarq.55.463
- Mana AA, Allouhi A, Hamrani A, Rahman S, el Jamaoui I, Jayachandran K. Sustainable AI-based production agriculture: Exploring AI applications and implications in agricultural practices. Smart Agric Technol. 2024;7. https://doi.org/10.1016/j.atech.2024.100416
- Ampatzidis Y, Partel V, Meyering B, Albrecht U. Citrus rootstock evaluation utilizing UAV-based remote sensing and artificial intelligence. Comput Electron Agric. 2019;164. https://doi.org/10.1016/j.compag.2019.104900
- Chamara N, Bai G, Ge Y. AICropCAM: Deploying classification, segmentation, detection and counting deep-learning models for crop monitoring on the edge. Comput Electron Agric. 2023;215:108420. https://doi.org/10.1016/j.compag.2023.108420
Downloads
Download data is not yet available.