Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 2 (2025)

Biocatalytic conversion of syngas to liquid biofuels using Clostridium acetobutylicum

DOI
https://doi.org/10.14719/pst.6320
Submitted
25 November 2024
Published
03-04-2025 — Updated on 13-04-2025
Versions

Abstract

This study aimed to develop a pilot-scale bioreactor for ethanol production from syngas produced from biomass gasification and evaluate its performance. Gasification of characterized feedstock, namely Casuarina wood and coconut shell, is performed in a 2 kg hr-1 downdraft gasifier and the produced gas is cooled in a heat exchanger and scrubbed in a scrubbing bed to produce syngas free of moisture, tar and particulates. The syngas are fermented to produce biofuels in a 5 L capacity bioreactor with Clostridium acetobutylicum strains. The percentage yield of acetone, butanol and ethanol was verified with the standard concentration and found to be 12%, 5% and 7% from casuarina wood and 13%, 7% and 6% from coconut shell respectively. The syngas components viz., carbon monoxide (CO), carbon dioxide (CO2) and hydrogen (H), are fermented to produce acetone, butanol and ethanol along with larger proportions of acids. These acids can be converted into bio-alcohol if the fermentation period or gas-liquid transfer is enhanced. The pretreatment of feedstock is not required in syngas fermentation as it is a major process in conventional bio-alcohol production methods. This pays a way to superior technology in terms of cost and time.

References

  1. Xia A, Lin K, Zhu T, Huang Y, Zhu X, Zhu X, et al. Improving the saccharification efficiency of lignocellulosic biomass using a bio-inspired two-stage microreactor system loaded with complex enzymes. Green Chem. 2022;24:9519-29. https://doi.org/10.1039/D2GC02965K
  2. Pavolova H, Bakalár T, Kyše?a K, Klimek M, Hajduova Z, Zawada M. The analysis of investment into industries based on portfolio managers. Acta Montan Slovaca. 2021;26(1):161-70. https://doi.org/10.46544/AMS.v26i1.14
  3. Akbari M, Loganathan N, Tavakolian H, Mardani A, Å treimikien? D. The dynamic effect of micro-structural shocks on private investment behavior. Acta Montan Slovaca. 2021;26(1):1-17. https://doi.org/10.46544/AMS.v26i1.01
  4. Maroušek J. Aluminum nanoparticles from liquid packaging board improve the competitiveness of (bio) diesel. Clean Technol Environ Policy. 2023;25(3):1059-67. https://doi.org/10.1007/s10098-022-02413-y
  5. Maroušek J, Gavurová B, Strunecký O, Maroušková A, Sekar M, Marek V. Techno-economic identification of production factors threatening the competitiveness of algae biodiesel. Fuel. 2023;344:128056. https://doi.org/10.1016/j.fuel.2023.128056
  6. Demirbas A. Progress and recent trends in biofuels. Prog Energy Combust Sci. 2007;33:1–18. https://doi.org/10.1016/j.pecs.2006.06.001
  7. Perret L, Boukis N, Saue J. Synthesis gas fermentation at high cell density: How pH and hydrogen partial pressure affect productivity and product ratio in continuous fermentation. Bioresour Technol. 2024;391A:29894. https://doi.org/10.1016/j.biortech.2023.129894
  8. Liew FM, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Kopke M. Gas fermentation – A flexible platform for commercial scale production of low carbon fuels and chemicals from waste and renewable feedstocks. Front Microbiol. 2016;11(7):694. https://doi.org/10.3389/fmicb.2016.00694
  9. Sriramajayam S, Padhi T, Ramesh D, Gitanjali J, Palaniselvam V. Process optimization of simultaneous saccharification and fermentation system for bioethanol production from pearl millet stalk. Int J Agric Sci. 2022;14(6):11381?85.
  10. Oswald F, Dörsam S, Veith N, Zwick M, Neumann A, Ochsenreither K, et al. Sequential mixed cultures: From syngas to malic acid. Front Microbiol. 2016;7:891. https://doi.org/10.3389/fmicb.2016.00891
  11. Liakakou ET, Vreugdenhil BJ, Cerone N, Zimbardi F, Pinto F, André R, et al. Gasification of lignin-rich residues for the production of biofuels via syngas fermentation: Comparison of gasification technologies. Fuel. 2019;251:580–92. https://doi.org/10.1016/j.fuel.2019.04.081
  12. Jack J, Lo J, Maness PC, Ren ZJ. Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas. Biomass Bioenergy. 2019;124:95–101. https://doi.org/10.1016/j.biombioe.2019.03.011
  13. Maroušek J, Trakal L. Techno-economic analysis reveals the untapped potential of wood biochar. Chemosphere. 2022;291(Part-1):133000. https://doi.org/10.1016/j.chemosphere.2021.133000
  14. Pardo-Planas O, Atiyeh HK, Phillips JR, Aichele CP, Mohammad S. Process simulation of ethanol production from biomass gasification and syngas fermentation. Bioresour Technol. 2017;245(Part A):925–32. https://doi.org/10.1016/j.biortech.2017.08.193
  15. Fernández NA, Veiga MC, Kennes C. Selective anaerobic fermentation of syngas into either C2-C6 organic acids or ethanol and higher alcohols. Bioresour Technol. 2019;280:387-95. https://doi.org/10.1016/j.biortech.2019.02.018
  16. Sun X, Atiyeh HK, Huhnke RL, Tanner RS. Syngas fermentation process development for production of biofuels and chemicals: A review. Bioresour Technol Rep. 2019;7:100279. https://doi.org/10.1016/j.biteb.2019.100279
  17. Rückel A, Hannemann J, Maierhofer C, Fuchs A, Weuster-Botz D. Studies on syngas fermentation with Clostridium carboxidivorans in stirred-tank reactors with defined gas impurities. Front Microbiol. 2021;12:655390. https://doi.org/10.3389/fmicb.2021.655390
  18. Wainaina S, Horváth IS, Taherzadeh MJ. Biochemicals from food waste and recalcitrant biomass via syngas fermentation: A review. Bioresour Technol. 2018;248(Part-A):113-121. https://doi.org/10.1016/j.biortech.2017.06.075
  19. Ragsdale SW. Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit Rev Biochem Mol Biol. 1991;26(3-4):261–300. https://doi.org/10.3109/10409239109114070
  20. Henstra AM, Sipma J, Rinzema A, Stams AJM. Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol. 2007;18(3):200–206. https://doi.org/10.1016/j.copbio.2007.03.008
  21. Shen N, Xia XY, Zeng RJ, Zhang F. Conversion of syngas (CO and H2) to biochemicals by mixed culture fermentation in mesophilic and thermophilic hollow-fiber membrane biofilm reactors. J Clean Prod. 2018;202:536–542. https://doi.org/10.1016/j.jclepro.2018.08.162
  22. Dogru M, Howrath CR, Akay G, Keskinler B, Malik AA. Gasification of hazelnut shells in a downdraft gasifier. Energy. 2002;27(5):415-27. https://doi.org/10.1016/S0360-5442(01)00094-9
  23. Munasinghe PC, Khanal SK. Biomass-derived syngas fermentation into biofuels: Opportunities and challenges. Bioresour Technol. 2010;101(13):5013-22. https://doi.org/10.1016/j.biortech.2009.12.098
  24. Xu D, Tree DR, Lewis RS. The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy. 2011;35(7):2690–96. https://doi.org/10.1016/j.biombioe.2011.03.005
  25. Bain RL, Broer K. Gasification. In: Brown RC, editor. Thermochemical processing of Biomass: Conversion into Fuels, Chemicals and Power. Hoboken (NJ): Wiley Online library; 2011:47–77 https://doi.org/10.1002/9781119990840.ch3
  26. Nastaj J, Ambro?ek B. Analysis of gas dehydration in TSA system with multi-layered bed of solid adsorbents. Chem Eng Process: Process Intensif. 2015;96:44–53. https://doi.org/10.1016/j.cep.2015.08.001
  27. Saleem J, Shahid UB, Hijab M, Mackey H, Mckay G. Production and applications of activated carbons as adsorbents from olive stones. Biomass Conv Bioref. 2019;9:775–802. https://doi.org/10.1007/s13399-019-00473-7
  28. McKendry P. Energy production from biomass (part 3): gasification technologies. Bioresour Technol. 2002;83(1):55-63. https://doi.org/10.1016/S0960-8524(01)00120-1
  29. Monir MU, Abd Aziz A, Khatun F, Yousuf A. Bioethanol production through syngas fermentation in a tar free bioreactor using Clostridium butyricum. Renew Energy. 2020;157:1116-23.https://doi.org/10.1016/j.renene.2020.05.099
  30. Xu D, Lewis RS. Syngas fermentation to biofuels: Effects of ammonia impurity in raw syngas on hydrogenase activity. Biomass Bioenergy. 2012;45:303–310. https://doi.org/10.1016/j.biombioe.2012.06.022
  31. Abubackar HN, Veiga MC, Kennes C. Production of acids and alcohols from syngas in a two-stage continuous fermentation process. Bioresour Technol. 2018;253:227–234. https://doi.org/10.1016/j.biortech.2018.01.026
  32. Jiang M, Chen JN, He AY, Wu H, Kong XP, Liu JL, et al. Enhanced acetone/butanol/ethanol production by Clostridium beijerinckii IB4 using pH control strategy. Process Biochem. 2014;49(8):1238-44. https://doi.org/10.1016/j.procbio.2014.04.017
  33. Sathish A, Sharma A, Gable P, Skiadas I, Brown R, Wen, Z. A novel bulk-gas-to-atomized-liquid reactor for enhanced mass transfer efficiency and its application to syngas fermentation. Chem Eng J. 2019;370:60-70. https://doi.org/10.1016/j.cej.2019.03.183
  34. Minofar B, Mil?i? N, Maroušek J, Gavurová B, Maroušková A. Understanding the molecular mechanisms of interactions between biochar and denitrifiers in N?O emissions reduction: Pathway to more economical and sustainable fertilizers. Soil Tillage Res. 2025;248:106405. https://doi.org/10.1016/j.still.2024.106405
  35. Valaskova K, Nagy M, Grecu G. Digital twin simulation modeling, artificial intelligence-based internet of manufacturing things systems and virtual machine and cognitive computing algorithms in the industry 4.0-based Slovak labor market. Oecon Copernic. 2024;15(1):95-143. https://doi.org/10.24136/oc.2814
  36. Skare M, Porada-Rochon M, Blazevic-Buric S. Energy cycles: Nature, turning points and role in England economic growth from 1700 to 2018. Acta Montan Slovaca. 2021;26(2): 281-302. https://doi.org/10.46544/AMS.v26i2.08
  37. Zheng Z, Xu Z, Skare M, Porada-Rochon M. A comprehensive bibliometric analysis of the energy poverty literature: from 1942 to 2020. Acta Montan Slovaca. 2021;26(3):512-33. https://doi.org/10.46544/AMS.v26i3.10
  38. Klieštik T, Kral P, Bugaj M, Durana P. Generative artificial intelligence of things systems, multisensory immersive extended reality technologies and algorithmic big data simulation and modelling tools in digital twin industrial metaverse. Equilib Q J Econ Econ Policy. 2024;19(2):429-61. https://doi.org/10.24136/eq.3108
  39. Kliestik T, Nica E, Durana P, Popescu GH. Artificial intelligence-based predictive maintenance, time-sensitive networking and big data-driven algorithmic decision-making in the economics of industrial internet of things. Oecon Copernic. 2023;14(4):1097-138. https://doi.org/10.24136/oc.2023.033
  40. Dvorský J, Bednarz J, Blajer-Go??biewska A. The impact of corporate reputation and social media engagement on the sustainability of SMEs: Perceptions of top managers and the owners. Equilib Q J Econ Econ Policy. 2023;18(3):779-811. https://doi.org/10.24136/eq.2023.025

Downloads

Download data is not yet available.