Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Agronomic and environmental perspectives on rice grain quality

DOI
https://doi.org/10.14719/pst.6469
Submitted
2 December 2024
Published
16-07-2025 — Updated on 24-07-2025
Versions

Abstract

Asia dominates global rice production, contributing nearly 90 % of the total output, with China and India producing over 50 % of the world's rice. Rice quality is primarily determined by head rice yield, which is influenced by genetic traits, environmental conditions, agronomic practices and postharvest handling. The global rice market values high milling recovery rates, with head rice recovery (HRR) often exceeding 50 % in premium varieties. However, high nighttime temperatures, fluctuating precipitation patterns and suboptimal storage conditions significantly degrade grain quality, leading to increased chalkiness and reduced HRR. Climate change is projected to reduce rice yields by 10–15 % per 1 °C rise in temperature, further threatening food security in monsoon-dependent regions. Utilizing crop models that integrate weather data and management practices can aid in optimizing sowing schedules and enhancing resilience in rice cultivation. This review synthesizes current research on the determinants of rice quality, examining the effects of genetic variability, drying and milling techniques and environmental stressors. Understanding these factors is crucial for improving rice production systems and ensuring long-term food security amidst climatic challenges.

References

  1. 1. Saha B, Panda P, Patra PS, Panda R, Kundu A, Roy AS, Mahato N. Effect of different levels of nitrogen on growth and yield of rice (Oryza sativa L.) cultivars under terai-agro climatic situation. Int J Curr Microbiol Appl Sci. 2017;6(7):2408–18. https://doi.org/10.20546/ijcmas.2017.604.285
  2. 2. Patra PS, Haque S. Effect of seedling age on tillering pattern and yield of rice (Oryza sativa L.) under system of rice intensification. ARPN J Agric Biol Sci. 2011;6(11):33–35.
  3. 3. Food Corporation of India. Government of India. 2019-20 [Internet]. [cited 2025 Jun 28]. Available from https://fci.org.in
  4. 4. Season-wise area, production productivity of rice in India [Internet]. [cited 2025 Jun 28]. Available from https://www.indiastat.com
  5. 5. Sharma N, Khanna R. Rice grain quality: Current developments and future prospects. Recent advances in grain crops research. Intech Open. 2019;5772:p. 89367. https://doi.org/10.5772/intechopen.89367
  6. 6. Farrell123 TC. Avoiding low temperature damage in Australia's rice industry with photoperiod sensitive cultivars [Internet]; 2003 [cited 2025 Jun 28]. Avialble from: http://www.regional.org.au/au/asa/2003/
  7. 7. Nalley L, Dixon B, Tack J, Barkley A, Jagadish K. Optimal harvest moisture content for maximizing mid-South rice milling yields and returns. Agron J. 2016;108:701. https://doi.org/10.2134/agronj2015.0408
  8. 8. Bautista RC, Siebenmorgen TJ, Counce PA. Rice kernel chalkiness and milling quality relationship of selected cultivars. B R Wells Rice Res Stud. 2009;581:220.
  9. 9. Ashida K, Iida S, Yasui T. Morphological, physical and chemical properties of grain and flour from chalky rice mutants. Cereal Chem. 2009;86(3):225–31. http://dx.doi.org/10.1094/CCHEM-86-2-0225
  10. 10. Li G, Kuijer HNJ, Yang XJ, Liu HR, Shen CQ, Shi J, et al. MADS1 maintains barley spike morphology at high ambient temperatures. Nat Plants. 2021;7(8):1093–107. https://doi: 10.1038/s41477-021-00957-3
  11. 11. Blanche SB, Linscombe SD. Stability of rice grain and whole kernel milling yield is affected by cultivar and date of planting. Agron J. 2009;101:522–28. https://doi.org/10.2134/agronj2008.0160x
  12. 12. Saeed F, Mohammad RA. An investigation of the effects of harvesting time and milling moisture content of paddy on the quality of milled rice. Int J Biosci. 2013;3:133–38. http://dx.doi.org/10.12692/ijb/3.10.133-138
  13. 13. Odoom DA. Factors affecting cracking and breakage of rice (Oryza sativa L.) during milling: A review. J Food Technol Pres. 2021;3(1):116. http://dx.doi.org/10.36266/JFTP/117
  14. 14. Cnossen AG, Siebenmorgen TJ. The glass transition temperature concept in rice drying and tampering: Effects on milling quality. Trans ASAE. 2000;43:1661–67. http://dx.doi.org/10.13031/2013.3066
  15. 15. Jodari F. Registration of dell rose rice. Crop Sci. 1996;36:141. https://doi.org/10.2135/cropsci1996.0011183X003600050064x
  16. 16. Zheng TQ, Xu JL, Li ZK, Zhai HQ, Wan JM. Genomic regions associated with milling quality and grain shape identified in a set of random introgression lines of rice (Oryza sativa L.). Plant Breed. 2007;126(2):158–63. https://doi.org/10.1111/j.1439-0523.2007.01357.x
  17. 17. Candole B, Siebenmorgen TJ, Lee F, Cartwright R. Effect of rice blast and sheath blight on the physical properties of selected rice cultivars. Cereal Chem. 2000;77(5):535–40. http://dx.doi.org/10.1094/CCHEM.2000.77.5.535
  18. 18. Hardjawinata S. Macroclimatic aspects of rice production in Southeast Asia. In: Agrometeorology of the rice crop. Proc. Symposium IRRI, Los Banos, Laguna, Philippines; 1980. p. 50–57
  19. 19. Oldeman LR. The agroclimatic classification of rice-growing environments in Indonesia. Los Banos: IRRI; 1980. p. 47–55
  20. 20. Wang B, Gadgil S, Kumar RK. The Asian monsoon—agriculture and economy. The Asian Monsoon. 2006;651–83. https://doi.org/10.1016/j.quascirev.2004.10.002
  21. 21. Prasanna V. Impact of monsoon rainfall on the total food grain yield over India. J Earth Syst Sci. 2014;123(5):1129–45. https://doi.org/10.1007/s12040-014-0444-x
  22. 22. Kumar K, Kumar RK, Ashrit R, Deshpande NR, Hansen JW. Climate impacts on Indian agriculture. Int J Climatol. 2004;24:1375–93. https://doi.org/10.1002/joc.1081
  23. 23. Parthasarathy B, Diaz HF, Eischeid JK. Prediction of all-India summer monsoon rainfall with regional and large-scale parameters. J Geophys Res: Atmos. 1988;93(D5):5341–50. https://doi.org/10.1029/JD093iD05p05341
  24. 24. Gadgil S, Rao PR, Sridhar PR. Modeling impact of climate variability on rainfed groundnut. Curr Sci. 1999;76(4):557–69. https://doi.org/ 10.1029/JD093iD05p05341
  25. 25. Bautista RC, Siebenmorgen TJ. Individual rice kernel moisture content variability trends. Appl Eng Agric. 2005;21(4):637–43. https://doi.org/10.13031/2013.29299
  26. 26. Bautista RC, Siebenmorgen TJ, Mauromoustakos A. The role of rice individual kernel moisture content distributions at harvest on milling quality. Trans ASABE. 2009;52:1611. https://doi.org/10.13031/2013.29112
  27. 27. Mackill DJ. Classifying japonica rice cultivars with RAPD markers. Crop Sci. 1995;35:889–94. https://doi.org/10.2135/cropsci1995.0011183X003500030043x
  28. 28. Calingacion M, Laborte A, Nelson A, Resurreccion A, Concepcion JC, Daygon VD, et al. Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLOS One. 2014;9(1):e85106. https://doi.org/10.1371/journal.pone.0085106
  29. 29. Rerkasem B, Rerkasem K. Agrodiversity for in situ conservation of Thailand’s native rice germplasm. Chiang Mai Univ J. 2002;1:129–48.
  30. 30. Mukhopadhyay S, Siebenmorgen TJ, Mauromoustakos A. Effect of tempering approach following cross-flow drying on rice milling yields. Dry Technol. 2019;37(16):2137–51. https://doi.org/10.1080/07373937.2018.1564760
  31. 31. Inprasit C, Noomhorm A. Effect of drying air temperature and grain temperature of different types of dryers and operation on rice quality. Dry Technol. 2001;19(2):389–404. https://doi.org/10.1081/DRT-100102912
  32. 32. Tong C, Gao H, Luo S, Liu L, Bao J. Impact of postharvest operations on rice grain quality: A review. Compr Rev Food Sci Food Saf. 2019;18(3):626–40. https://doi.org/10.1111/1541-4337.12439
  33. 33. Alhendi AS, AlRaw SH, Jasim AM. Effect of moisture content of two paddy varieties on the physical and cooked properties of produced rice. Braz J Food Technol. 2019;22:e2018184. https://doi.org/10.1590/1981-6723.18418
  34. 34. Sater HM, Pinson SRM, Moldenhauer KAK, Siebenmorgen TJ, Mason RE, Boyett VA, Edwards JD. Fine mapping of qFIS1-2, a major QTL for kernel fissure resistance in rice. Crop Sci. 2017;57(3):1511–21. https://doi.org/10.2135/cropsci2016.09.0821
  35. 35. Imoudu PB, Olufayo AA. The effect of sun-drying on milling yield and quality of rice. Bioresour Technol. 2000;74(3):267–69. https://doi.org/10.1016/S0960-8524(99)00128-5
  36. 36. Haydon KN, Siebenmorgen TJ. Impacts of delayed drying on discoloration and functionality of rice. Cereal Chem. 2017;94(4):683–92. https://doi.org/10.1094/CCHEM-10-16-0257-R
  37. 37. Zheng X, Lan Y. Effects of drying temperature and moisture content on rice taste quality [Internet]; 2007 https://doi.org/10.1142/9789812771957_0162
  38. 38. Dillahunty AL, Siebenmorgen TJ, Mauromoustakos A. Effect of temperature, exposure duration and moisture content on color and viscosity of rice. Cereal Chem. 2001;78(5):559–63. https://doi.org/10.1094/CCHEM.2001.78.5.559
  39. 39. Soponronnarit S. Effects of drying temperature and tempering time on starch digestibility of brown fragrant rice. J Food Eng. 2008;86:251–58. https://doi.org/10.1016/j.jfoodeng.2007.10.002
  40. 40. Lamberts L, De Bie E, Vandeputte GE, Veraverbeke WS, Derycke V, De Man W, Delcour JA. Effect of milling on colour and nutritional properties of rice. Food Chem. 2007;100(4):1496–503. https://doi.org/10.1016/j.foodchem.2005.11.042
  41. 41. Monks JLF, Vanier NL, Casaril J, Berto RM, de Oliveira M, Gomes CB, et al. Effects of milling on proximate composition, folic acid, fatty acids and technological properties of rice. J Food Compos Anal. 2013;30(2):73–79. https://doi.org/10.1016/j.jfca.2013.01.009
  42. 42. Puri S, Dhillon B, Sodhi NS. Effect of degree of milling (DoM) on overall quality of rice: A review. Int J Adv Biotechnol Res. 2014;5:10–12. http://www.bipublicat
  43. 43. Mohapatra D, Bal S. Cooking quality and instrumental textural attributes of cooked rice for different milling fractions. J Food Eng. 2006;73(3):253–59. https://doi.org/10.1016/j.jfoodeng.2005.01.028
  44. 44. Zhou Z, Robards K, Helliwell S, Blanchard C. Ageing of stored rice: Changes in chemical and physical attributes. J Cereal Sci. 2002;35(1):65–78. https://doi.org/10.1006/jcrs.2001.0418
  45. 45. Butt MS, Anjum FM, Salim-ur-Rehman, Tahir-Nadeem M, Sharif MK, Anwer M. Selected quality attributes of fine basmati rice: Effect of storage history and varieties. Int J Food Prop. 2008;11(3):698–711. https://doi.org/10.1080/10942910701622706
  46. 46. Hayash S, Yanase E. A study on the color deepening in red rice during storage. Food Chem. 2016;199:457–62. https://doi.org/10.1016/j.foodchem.2015.12.023
  47. 47. Trigo DM. Effect of rice storage conditions on quality of rice mills. In: Proceedings of the 6th International Working Conference on Stored-product Protection—Volume 2; 1994. p. 706–11.
  48. 48. Zhou Z, Robards K, Helliwell S, Blanchard C. Effect of storage temperature on cooking behaviour of rice. Food Chem. 2007;105(2):491–97. https://doi.org/10.1016/j.foodchem.2007.04.005
  49. 49. Zhou ZK, Yang X, Su Z, Bu DD. Effect of ageing-induced changes in rice physicochemical properties on digestion behaviour following storage. J Stored Prod Res. 2016;67:13–18. https://doi.org/10.1016/j.jspr.2016.01.004
  50. 50. Swamy YMI, Sowbhagya CM, Bhattacharya KR. Changes in the physicochemical properties of rice with aging. J Sci Food Agric. 1978;29(7):627–39. https://doi.org/10.1002/jsfa.2740290709
  51. 51. Tang S, Zhang H, Liu W, Dou Z, Zhou Q, Chen W, et al. Nitrogen fertilizer at heading stage effectively compensates for the deterioration of rice quality by affecting the starch-related properties under elevated temperatures. Food Chem. 2019;277:455–62. https://doi.org/10.1016/j.foodchem.2018.10.137
  52. 52. Shi W, Yin X, Struik PC, Xie F, Schmidt RC, Jagadish KSV. Grain yield and quality responses of tropical hybrid rice to high night-time temperature. Field Crop Res. 2016;190:18–25. https://doi.org/10.1016/j.fcr.2015.10.006
  53. 53. Siebenmorgen TJ, Grigg BC, Lanning SB. Impacts of preharvest factors during kernel development on rice quality and functionality. Annu Rev Food Sci Technol. 2013;4:101–15. https://doi.org/10.1146/annurev-food-030212-182644
  54. 54. Lisle AJ, Martin M, Fitzgerald MA. Chalky and translucent rice grains differ in starch composition, structure and cooking properties. Cereal Chem. 2000;77:627–32. https://doi.org/10.1094/CCHEM.2000.77.5.627
  55. 55. Kulkarni N, Rao HSN. Effect of low temperature on winter rice in Andhra Pradesh. Int Rice Res Newslett. 1990;15:1‒18.
  56. 56. He GC, Kogure K, Suzuki H. Development of endosperm and synthesis of starch in rice grain III: Starch property as affected by the temperature during grain development. Jpn J Crop Sci. 1990;59:340–45. https://doi.org/10.1626/jcs.59.340
  57. 57. Morita S, Nakano H. Non-structural carbohydrate content in the stem at full heading contributes to high performance of ripening in heat-tolerant rice cultivar Nikomaru. Crop Sci. 2011;51:818–28. https://doi.org/10.2135/cropsci2010.06.0373
  58. 58. Yang L, Wang Y, Dong G, Gu H, Huang J, Zhu J, et al. The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Res. 2007;102:128. https://doi.org/10.1016/j.fcr.2007.03.006
  59. 59. Kobata T, Miya N, Anh N. High risk of the formation of milky white rice kernels in cultivars with higher potential grain growth rate under elevated temperatures. Plant Prod Sci. 2011;14:359–64. https://doi.org/10.1626/pps.14.359
  60. 60. Tinarelli A. Climate and rice. Las Banos: IRRI; 1989. p. 281–300
  61. 61. CIRAD–GRET. Memento de l’agronome. Jouve (France, 11bd de Sébaspol, 75001 Paris n°312091; 2002. p. 799–811
  62. 62. Kobata T, Uemuki N. High temperatures during the grain filling period do not reduce the potential grain dry matter increase of rice. Agron J. 2004;96:406–14. https://doi.org/10.2134/agronj2004.0406
  63. 63. Zhou N, Wei H, Zhang H. Response of milling and appearance quality of rice with good eating quality to temperature and solar radiation in lower reaches of Huai River. Agronomy. 2021;11:77. https://doi.org/10.3390/agronomy11010077
  64. 64. Hirai GI, Nakayama N, Hirano T, Chiyo H, Minato N, Tanaka O. Studies on the effect of relative humidity of atmosphere on growth and physiology of rice plants. VI. Effect of ambient humidity on dry matter production and nitrogen absorption at various temperatures. Jpn J Crop Sci. 1989;58(3):368–73. https://doi.org/10.1626/jcs.58.368
  65. 65. Ghildyal BP, Jana RK. Agrometeorological environment affecting rice yield. Agron J. 1967;59:286–87. https://doi.org/10.2134/agronj1967.00021962005900030026x
  66. 66. Subbiah SV. Hybrid rice seed production technology theory and practice. Directorate of Rice Research; 1996. p. 122–24
  67. 67. Shi CH, Shen ZT. Effect of high humidity and low temperature in spikelet fertility in indica rice. IRRN. 1990;15(3):10–11.
  68. 68. Sunil KM. Crop weather relationship in rice [M.Sc. Thesis]. Kerala Agricultural University, Thrissur, Kerala; 2000
  69. 69. Dong R, Lu Z, Liu Z, Koide S, Cao W. Effect of drying and tempering on rice fissuring analyzed by integrating intra-kernel moisture distribution. J Food Eng. 2010;97:161–67. https://doi.org/10.1016/j.jfoodeng.2009.10.005
  70. 70. Alvarado JR. Influence of air temperature on rice population, length of period from sowing to flowering and spikelet sterility. Philippines: IRRI; 2002
  71. 71. Yoshida S. Fundamentals of rice crop science. IRRI, Philippines; 1981
  72. 72. Tashiro T, Wardlaw IF. The effect of high temperature on the accumulation of dry matter carbon and nitrogen in the kernel of rice. Aust J Plant Physiol. 1991;18(3):259–65. https://doi.org/10.1071/PP9910259
  73. 73. Yamakawa H, Hirose T, Kuroda M, Yamaguchi T. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol. 2007;144:258–77.
  74. https://doi.org/10.1104/pp.107.098665
  75. 74. Dobermann A, Fairhurst T. Rice: Nutrient disorders and nutrient management. Handbook Series, Potash and Phosphate Institute (PPI), Potash and Phosphate Institute of Canada (PPIC) and International Rice Research Institute, Philippine; 2000; p. 191
  76. 75. Sreenivasan PS. Agroclimatology of rice in India. In: Rice research in India. New Delhi: ICAR; 1985. p. 203–30
  77. 76. Marchezan E, Ayude MT, Aude MI. Adverse effect of wind on irrigated rice. Cienc Rural. 1993;23(3):379–81. https://doi.org/10.1590/S0103-84781993000300025
  78. 77. Patel AR, Patel ML, Patel RK, Mote BM. Effect of different sowing dates on phenology, growth and yield of rice–A review. Plant Arch. 2019;19(1):12–16.
  79. 78. Lee DJ, Shim IS, Seo JH, Cho KJ, Chae JC. Growth and grain yield of infant seedling in rice as affected by different planting dates in Southern Alpine area. RDA J Agric Sci Rice. 1994;36(1):1–7.
  80. 79. Chopra NK, Chopra N, Yadav RN, Nagar KC. Effect of transplanting dates on seed yield and quality of paddy cv. Pusa-44. Seed Res. 2006;34(2):218–20.
  81. 80. Xie GH, Su BL, Wang SL, Ma XC, Wu QF. A study on the growth and dry matter production of rice in Wuling mountain area 1. Effects of sowing dates on growth and development of rice. Acta Agric Univ Pekinensis. 1995;21(3):259–64.
  82. 81. Bashir MU, Akber N, Iqbal A, Zaman H. Effect of different sowing dates on yield and yield components of direct-seeded coarse rice (Oryza sativa L.). Pak J Agric Sci. 2010;47(4):361–65.
  83. 82. Gravois KA, Helms RS. Seeding rate effect on rough rice yield, head rice and total milled rice. Agron J. 1996;88:82–84. https://doi.org/10.2134/agronj1996.00021962008800010017x
  84. 83. Yawinder S, Nagi S, Sidhu S, Sekhon KS. Physicochemical, milling and cooking quality of rice as affected by sowing and transplanting dates. J Sci Food Agric. 2012;37:881–87. https://doi.org/10.1002/jsfa.2740370910
  85. 84. Ali F, Waters D, Ovenden B, Bundock P, Raymond CA, Rose TJ. Australian rice varieties vary in grain yield response to heat stress during reproductive and grain-filling stages. J Agron Crop Sci. 2018;205:179–87. https://doi.org/10.1111/jac.12312
  86. 85. Weng J, Gu S, Wan X, Gao H, Guo T, Su N, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 2008;18:1199–209. https://doi.org/10.1038/cr.2008.307
  87. 86. Kato T, Segami S, Toriyama M, Kono I, Ando T, Yano M, et al. Detection of QTLs for grain length from large grain rice (Oryza sativa L.). Breed Sci. 2011;61:269–74. https://doi.org/10.1270/jsbbs.61.269
  88. 87. Zhen FX, Wang W, Wang HY, Zhou JJ, Liu B, Zhu Y, et al. Effects of short-term heat stress at booting stage on rice-grain quality. Crop Pasture Sci. 2019;70(6):486–98. https://doi.org/10.1071/CP18260
  89. 88. Wu C, Tang S, Li GH, Wang SH, Fahad S, Ding YF. Roles of phytohormone changes in the grain yield of rice plants exposed to heat: A review. PeerJ. 2019;7:e7792. https://doi.org/10.7717/peerj.7792
  90. 89. Dongling J, Wenhui X, Zhiwei S, Lijun L, Junfei G, Hao Z, et al. Translocation and distribution of carbon-nitrogen in relation to rice yield and grain quality as affected by high temperature at early panicle initiation stage. Rice Sci. 2023;30(6):598–612. https://doi.org/10.1016/j.rsci.2023.06.003
  91. 90. Wang WL, Cai C, Lam SK, Liu G, Zhu JG. Elevated CO2 cannot compensate for japonica grain yield losses under increasing air temperature because of the decrease in spikelet density. Eur J Agron. 2018;99:21–29. https://doi.org/10.1016/j.eja.2018.06.005
  92. 91. Hu ZJ, Lu SJ, Wang MJ, He HH, Sun L, Wang HR, et al. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant. 2018;11(5):736–49. https://doi.org/10.1016/j.molp.2018.03.005
  93. 92. Leesawatwong M, Jamjod S, Kuo J, Dell B, Rerkasem B. Nitrogen fertilizer increases seed protein and milling quality of rice. Cereal Chem. 2005;82:588–93. https://doi.org/10.1094/CC-82-0588
  94. 93. Kim HY, Lim SS, Kwak JH, Lee DS, Lee SM, Ro HM, Choi WJ. Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.) exposed to experimental warming with elevated CO2. Plant Soil. 2011;342(1/2):59–71. https://doi.org/10.1007/s11104-010-0665-y
  95. 94. Porter JR, Semenov MA. Crop responses to climatic variation. Philos Trans R Soc B Biol Sci. 2005;360:2021–35. https://doi.org/10.1098/rstb.2005.1752
  96. 95. Burke MB, Lobell DB, Guarino L. Shifts in African crop climates by 2050 and the implications for crop improvement and genetic resources conservation. Global Environ Change. 2009;19:317–32. https://doi.org/10.1016/j.gloenvcha.2009.04.003
  97. 96. Tubiello FN, Donatelli M, Rosenzweig C, Stockle CO. Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. Eur J Agron. 2000;13:179–89. https://doi.org/10.1016/S1161-0301(00)00073-3
  98. 97. Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol. 2007;13:679–706. https://doi.org/10.1111/j.1365-2486.2006.01305.x
  99. 98. Portmann F, Siebert S, Bauer C, Doll P. Global dataset of monthly growing areas of 26 irrigated crops. Institute of Physical Geography, University of Frankfurt. Frankfurt am Main; 2008
  100. 99. Stehfest E, Heistermann M, Priess JA, Ojima DS, Alcamo J. Simulation of global crop production with the ecosystem model DayCent. Ecol Model. 2007;209:203–19. https://doi.org/10.1016/j.ecolmodel.2007.06.028
  101. 100. Fischer G, van Velthuizen H, Shah M, Nachtergaele FO. Global agro-ecological assessment for agriculture in the 21st century: methodology and results. Res Rep RR-02-02. International Institute for Applied Systems Analysis, Laxenburg, Austria; 2002
  102. 101. Andarzian B, Hoogenboom G, Bannayan M, Shirali M, Andarzian B. Determining optimum sowing date of wheat using CSM-CERES-Wheat model. J Saudi Soc Agric Sci. 2015;14(2):189–99. https://doi.org/10.1016/j.jssas.2014.04.004
  103. 102. Kim SH, Yang Y, Timlin DJ, Fleisher DH, Dathe A, Reddy VR, Staver K. Modeling temperature responses of leaf growth, development and biomass in maize with MAIZSIM. Agron J. 2012;104(6):1523–37. https://doi.org/10.2134/agronj2011.0321
  104. 103. Mohammed A, Tana T, Singh P, Molla A, Seid A. Identifying best crop management practices for chickpea (Cicer arietinum L.) in Northeastern Ethiopia under climate change condition. Agric Water Manag. 2017;194:68–77. https://doi.org/10.1016/j.agwat.2017.08.022
  105. 104. Nain AS, Dadhwal VK, Singh TP. Use of CERES-Wheat model for wheat yield forecast in central Indo-Gangetic Plains of India. J Agric Sci. 2004;142(1):59–70. https://doi.org/10.1017/S0021859604004022
  106. 105. Ojeda JJ, Rezaei EE, Kamali B, McPhee J, Meinke H, Siebert S, Ewert F. Impact of crop management and environment on the spatio-temporal variance of potato yield at regional scale. Field Crops Res. 2021;270:108213. https://doi.org/10.1016/j.fcr.2021.108213
  107. 106. Hochman Z, Lilley J, Pratley J, Kirkegaard J. Impact of simulation and decision support systems on sustainable agriculture. Aust Agric. 2020;337–56.
  108. 107. Ullah K, Khan N, Usman Z, Ullah R, Saleem FY, Shah SAI, Salman M. Impact of temperature on yield and related traits in cotton genotypes. J Integr Agric. 2016;15(3):678–83. https://doi.org/10.1016/S2095-3119(15)61088-7
  109. 108. Pahmeyer C, Kuhn T, Britz W. 'Fruchtfolge': A crop rotation decision support system for optimizing cropping choices with big data and spatially explicit modeling. Comput Electr Agric. 2021;181:105948. https://doi.org/10.1016/j.compag.2020.105948

Downloads

Download data is not yet available.