Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 2 (2025)

Exploring the scope of ecosystem services in diverse farming systems for sustainable agriculture: A review

DOI
https://doi.org/10.14719/pst.6498
Submitted
3 December 2024
Published
26-04-2025 — Updated on 27-05-2025
Versions

Abstract

Ecosystem services (ES) are fundamental to promoting agricultural sustainability, playing a vital role in enhancing resilience and productivity within agricultural ecosystems. This review critically examines the interactions between biodiversity, farming practices and ES delivery, presenting a novel synthesis of their roles in sustainable agriculture. Unlike existing literature focussing on isolated ES or individual farming paradigms, this review integrates insights from multiple agricultural paradigms, including organic, regenerative and conventional systems. It provides a comparative assessment of their effects on biodiversity and ecosystem functionality. It also emphasizes the role of agricultural biodiversity as a nexus for enhancing ecosystem services. This review is structured into four main sections. It begins by classifying key ecosystem services relevant to agricultural systems, underscoring their importance for environmental sustainability. Second, it investigates various farming systems, with a particular focus on the role of biodiversity in enhancing ecosystem services. Third, it conducts a comparative assessment of diverse farming systems follows, evaluating their impacts on biodiversity and ecosystem functionality to inform evidence-based strategies for enhancing ES. This review bridges gaps in existing research by highlighting synergies and proposing strategies to optimize diverse farming systems. These efforts aim to enhance ecosystem services and contribute to sustainable agricultural landscapes.

References

  1. 1. Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL. Soil and human security in the 21st century. Sci. 2015;348(6235):1261071. https://doi.org/10.1126/science.1261071
  2. 2. Bhattacharyya SS, Leite FFGD, France CL, Adekoya AO, Ros GH, de Vries W, et al. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Sci Total Environ. 2022;826:154161. https://doi.org/10.1016/j.scitotenv.2022.154161
  3. 3. Millennium ecosystem assessment MEA. Ecosystems and human well-being. Vol. 5. Island press Washington, DC; 2005.
  4. 4. Song S, Xiong K, Chi Y. Grassland ecosystem service and its enlightenment on the revitalization of rural ecological animal husbandry in the rocky desertification area: A literature review. Polish J Environ Stud. 2022;31(5):4499–510. https://doi.org/10.15244/pjoes/149742
  5. 5. Daily GR. Nature’s services: societal dependence on natural ecosystems. Environment Values. 1998;7(3):365-67.
  6. 6. Breslow SJ, Sojka B, Barnea R, Basurto X, Carothers C, Charnley S, et al. Conceptualizing and operationalizing human wellbeing for ecosystem assessment and management. Environ Sci Policy. 2016;66:250–59. https://doi.org/10.1016/j.envsci.2016.06.023
  7. 7. Lang Y, Song W, Zhang Y. Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Phys Chem Earth, Parts A/B/C. 2017;101:102–11. https://doi.org/10.1016/j.pce.2017.06.003
  8. 8. Schirpke U, Kohler M, Leitinger G, Fontana V, Tasser E, Tappeiner U. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst Serv. 2017;26:79–94. https://doi.org/10.1016/j.ecoser.2017.06.008
  9. 9. Rockstrom J, Edenhofer O, Gaertner J, DeClerck F. Planet-proofing the global food system. Nat Food. 2020;1(1):3–5. https://doi.org/10.1038/s43016-019-0010-4
  10. 10. Isbell F, Adler PR, Eisenhauer N, Fornara D, Kimmel K, Kremen C, et al. Benefits of increasing plant diversity in sustainable agroecosystems. J Ecol. 2017;105(4):871–79. https://doi.org/10.1111/1365-2745.12789
  11. 11. Lacoste M, Cook S, McNee M, Gale D, Ingram J, Bellon-Maurel V, et al. On-farm experimentation to transform global agriculture. Nat Food. 2022;3(1):11–18. https://doi.org/10.1038/s43016-021-00424-4
  12. 12. Schulte LA, Dale BE, Bozzetto S, Liebman M, Souza GM, Haddad N, et al. Meeting global challenges with regenerative agriculture producing food and energy. Nat Sustain. 2022;5(5):384–88. https://doi.org/10.1038/s41893-021-00827-y
  13. 13. Francaviglia R, Almagro M, Vicente-Vicente JL. Conservation agriculture and soil organic carbon: Principles, processes, practices and policy options. Soil Syst. 2023;7(1):17. https://doi.org/10.3390/soilsystems7010017
  14. 14. Kremen C, Miles A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc. 2012;17(4):40. http://www.jstor.org/stable/26269237
  15. 15. Altieri AH, Harrison SB, Seemann J, Collin R, Diaz RJ, Knowlton N. Tropical dead zones and mass mortalities on coral reefs. Proc Natl Acad Sci. 2017;114(14):3660–65. https://doi.org/10.1073/pnas.1621517114
  16. 16. Machmuller MB, Kramer MG, Cyle TK, Hill N, Hancock D, Thompson A. Emerging land use practices rapidly increase soil organic matter. Nat Commun. 2015;6(1):6995. https://doi.org/10.1038/ncomms7995
  17. 17. Wang J, Vanga SK, Saxena R, Orsat V, Raghavan V. Effect of climate change on the yield of cereal crops: A review. Clim. 2018;6(2):41. https://doi.org/10.3390/cli6020041
  18. 18. Tamburini G, Bommarco R, Wanger TC, Kremen C, Van Der Heijden MGA, Liebman M, et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci Adv. 2020;6(45):eaba1715. https://doi.org/10.1126/sciadv.aba1715
  19. 19. Kremen C. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg Top Life Sci. 2020;4(2):229–40. https://doi.org/10.1042/ETLS20190205
  20. 20. Edo M, Entling MH, Rosch V. Agroforestry supports high bird diversity in European farmland. Agron Sustain Dev. 2024;44:1. https://doi.org/10.1007/s13593-023-00936-2
  21. 21. Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM. Ecosystem services and dis-services to agriculture. Ecol Econ. 2007;64(2):253–60. https://doi.org/10.1016/j.ecolecon.2007.02.024
  22. 22. Tengo M, Belfrage K. Local management practices for dealing with change and uncertainty: A cross-scale comparison of cases in Sweden and Tanzania. Ecol Soc. 2004;9(3):4. https://www.jstor.org/stable/26267678
  23. 23. Gurr GM, Wratten SD, Landis DA, You M. Habitat management to suppress pest populations: progress and prospects. Annu Rev Entomol. 2017;62(1):91–109. https://doi.org/10.1146/annurev-ento-031616-035050
  24. 24. Duru M, Therond O, Martin G, Martin-Clouaire R, Magne M-A, Justes E, et al. How to implement biodiversity-based agriculture to enhance ecosystem services: A review. Agron Sustain Dev. 2015;35:1259–81. https://doi.org/10.1007/s13593-015-0306-1
  25. 25. Machnik A. Natural capital and ecological ecosystem services: Methods of measuring socio-economic value of nature. Responsible Consumption and Production. 2020;511–23. https://doi.org/10.1007/978-3-319-95726-5_44
  26. 26. Manson S, Nekaris KAI, Hedger K, Balestri M, Ahmad N, Adinda E, et al. Flower visitation time and number of visitor species are reduced by the use of agrochemicals in coffee home gardens. Agron. 2022;12(2):509. https://doi.org/10.3390/agronomy12020509
  27. 27. Baert JM, Eisenhauer N, Janssen CR, De Laender F. Biodiversity effects on ecosystem functioning respond unimodally to environmental stress. Ecol Lett. 2018;21(8):1191–99. https://doi.org/10.1111/ele.13088
  28. 28. Philip Robertson G, Gross KL, Hamilton SK, Landis DA, Schmidt TM, Snapp SS, et al. Farming for ecosystem services: An ecological approach to production agriculture. Biosci. 2014;64(5):404–15. https://doi.org/10.1093/biosci/biu037
  29. 29. Kazemi H, Klug H, Kamkar B. New services and roles of biodiversity in modern agroecosystems: A review. Ecol Indic. 2018;93:1126–35. https://doi.org/10.1016/j.ecolind.2018.06.018
  30. 30. Boix-Fayos C, de Vente J. Challenges and potential pathways towards sustainable agriculture within the European Green Deal. Agric Syst. 2023;207:103634. https://doi.org/10.1016/j.agsy.2023.103634
  31. 31. Sangothari A, Archana HA, Vasuki A, Surya R, Keerthana T. Biodiversity Conservation in Agricultural Landscapes: The Role of Integrated Farming Systems. Int J Environ Clim Chang. 2024;14(2):577–83. https://doi.org/10.9734/ijecc/2024/v14i23972
  32. 32. Maurer R. Comparing the effect of different agricultural land-use systems on biodiversity. Land use policy. 2023;134:106929. https://doi.org/10.1016/j.landusepol.2023.106929
  33. 33. Tuck SL, Winqvist C, Mota F, Ahnstrom J, Turnbull LA, Bengtsson J. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J Appl Ecol. 2014;51(3):746–55. https://doi.org/10.1111/1365-2664.12219
  34. 34. Tscharntke T, Grass I, Wanger TC, Westphal C, Batary P. Beyond organic farming–harnessing biodiversity-friendly landscapes. Trends Ecol Evol. 2021;36(10):919–30. https://doi.org/10.1016/j.tree.2021.06.010
  35. 35. Ponisio LC, M’Gonigle LK, Mace KC, Palomino J, De Valpine P, Kremen C. Diversification practices reduce organic to conventional yield gap. Proc R Soc B: Biol Sci. 2015;282:20141396. https://doi.org/10.1098/rspb.2014.1396
  36. 36. Gliessman S. Defining agroecology. Vol. 42, Agroecology and Sustainable Food Systems. Taylor and Francis; 2018. p. 599–600. https://doi.org/10.1080/21683565.2018.1432329
  37. 37. Haines-Young R, Potschin M. The links between biodiversity, ecosystem services and human well-being. Ecosystem Ecology: A new synthesis. 2010;1:110–39.
  38. 38. Lu Y, Wang R, Zhang Y, Su H, Wang P, Jenkins A, et al. Ecosystem health towards sustainability. Ecosyst Health Sustain. 2015;1(1):1–15. https://doi.org/10.1890/EHS14-0013.1
  39. 39. Mbow C, Noordwijk VM, Luedeling E, Neufeldt H, Minang PA, Kowero G. Agroforestry solutions to address food security and climate change challenges in Africa. Curr Opinion Environ Sustain. 2014;6:61–67. https://doi.org/10.1016/j.cosust.2013.10.014
  40. 40. Torralba M, Fagerholm N, Burgess PJ, Moreno G, Plieninger T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric Ecosyst Environ. 2016;230:150–61. https://doi.org/10.1016/j.agee.2016.06.002
  41. 41. Ayyam V, Palanivel S, Chandrakasan S, Ayyam V, Palanivel S, Chandrakasan S. Conservation Agriculture for Rehabilitation of Agro-ecosystems. Coastal Ecosystems of the Tropics-Adaptive Management. 2019;407–37. https://doi.org/10.1007/978-981-13-8926-9
  42. 42. Carceles Rodriguez B, Duran-Zuazo VH, Soriano Rodriguez M, Garcia-Tejero IF, Galvez Ruiz B, Cuadros Tavira S. Conservation agriculture as a sustainable system for soil health: A review. Soil Syst. 2022;6(4):87. https://doi.org/10.3390/soilsystems6040087
  43. 43. Bitew Y, Abera M. Conservation agriculture based annual intercropping system for sustainable crop production: A review. Indian J Ecol. 2019;46(2):235–49.
  44. 44. Migliorini P, Wezel A. Converging and diverging principles and practices of organic agriculture regulations and agroecology. A review. Agron Sustain Dev. 2017;37:1–18. https://doi.org/10.1007/s13593-017-0472-4
  45. 45. Reganold JP, Wachter JM. Organic agriculture in the twenty-first century. Nat Plants. 2016;2(2):1–8. https://doi.org/10.1038/nplants.2015.221
  46. 46. Smith OM, Cohen AL, Rieser CJ, Davis AG, Taylor JM, Adesanya AW, et al. Organic farming provides reliable environmental benefits but increases variability in crop yields: A global meta-analysis. Front Sustain Food Syst. 2019;3:82. https://doi.org/10.3389/fsufs.2019.00082
  47. 47. Giller KE, Hijbeek R, Andersson JA, Sumberg J. Regenerative agriculture: an agronomic perspective. Outlook Agric. 2021;50(1):13–25. https://doi.org/10.1177/0030727021998063
  48. 48. Rhodes CJ. The imperative for regenerative agriculture. Sci Program. 2017;100(1):80–129. https://doi.org/10.3184/003685017X14876775256165
  49. 49. Loconto AM, Fouilleux E. Defining agroecology: Exploring the circulation of knowledge in FAO’s Global Dialogue. Int J Social Agric Food. 2019;25(2):116–37. https://doi.org/10.48416/ijsaf.v25i2.27
  50. 50. Acs S, Berentsen P, Huirne R, Asseldonk VM. Effect of yield and price risk on conversion from conventional to organic farming. Aust J Agric Resour Econ. 2009;53(3):393–411. https://doi.org/10.1111/j.1467-8489.2009.00458.x
  51. 51. Smith J, Yeluripati J, Smith P, Nayak DR. Potential yield challenges to scale-up of zero budget natural farming. Nat Sustain. 2020;3(3):247–52. https://doi.org/10.1038/s41893-019-0469-x
  52. 52. Gebbers R, Adamchuk VI. Precision agriculture and food security. Sci. 2010;327(5967):828–31. https://doi.org/10.1126/science.1183899
  53. 53. Turinek M, Grobelnik-Mlakar S, Bavec M, Bavec F. Biodynamic agriculture research progress and priorities. Renewable Agric Food Syst. 2009;24(2):146–54. https://doi.org/10.1017/S174217050900252X
  54. 54. Fisher B, Turner RK, Morling P. Defining and classifying ecosystem services for decision making. Ecol Econ. 2009;68(3):643–53. https://doi.org/10.1016/j.ecolecon.2008.09.014
  55. 55. Su B, Liu M. Study on extra services of integrated agricultural landscapes: A case study conducted on the Coastal Bench Terrace System. Ecol Indic. 2022;145:109634. https://doi.org/10.1016/j.ecolind.2022.109634
  56. 56. Sylla M. Ecosystem services contributing to local economic sectors–conceptual framework of linking ecosystem services, benefits and economic sectors. Econ Environ. 2023; https://doi.org/10.34659/eis.2023.85.2.571
  57. 57. Deepthi N, Nagaraja BC, Paramesha M. Riparian Zones and Pollination Service: A Case Study from Coffee-Agrosystem Along River Cauvery, South India. Nat Environ Pollut Technol. 2020;19: 1235–40. https://doi.org/10.46488/NEPT.2020.v19i03.038
  58. 58. Babendreier D, Hou M, Tang R, Zhang F, Vongsabouth T, Win KK, et al. Biological control of lepidopteran pests in rice: A multi-nation case study from Asia. J Integr Pest Manag. 2020;11:5. https://doi.org/10.1093/jipm/pmaa002
  59. 59. Mehrabi Z, Delzeit R, Ignaciuk A, Levers C, Braich G, Bajaj K, et al. Research priorities for global food security under extreme events. One Earth. 2022;5(7):756–66.
  60. 60. Muhie SH. Novel approaches and practices to sustainable agriculture. J Agric Food Res. 2022;10:100446. https://doi.org/10.1016/j.jafr.2022.100446
  61. 61. Duflot R, San-Cristobal M, Andrieu E, Choisis J-P, Esquerré D, Ladet S, et al. Farming intensity indirectly reduces crop yield through negative effects on agrobiodiversity and key ecological functions. Agric Ecosyst Environ. 2022;326:107810. https://doi.org/10.1016/j.agee.2021.107810
  62. 62. Collas L, Crastes dit Sourd R, Finch T, Green R, Hanley N, Balmford A. The costs of delivering environmental outcomes with land sharing and land sparing. People Nat. 2023;5(1):228–40. https://doi.org/10.1002/pan3.10422
  63. 63. Gliessman S. Why is ecological diversity important? Vol. 46, Agroecology and Sustainable Food Systems. Taylor and Francis; 2022. p. 329–30. https://doi.org/10.1201/9781003304043
  64. 64. Rafflegeau S, Gosme M, Barkaoui K, Garcia L, Allinne C, Deheuvels O, et al. The ESSU concept for designing, modeling and auditing ecosystem service provision in intercropping and agroforestry systems. A review. Agron Sustain Dev. 2023;43(4):43. https://doi.org/10.1007/s13593-023-00894-9
  65. 65. Abakumov E, Suleymanov A, Guzov Y, Titov V, Vashuk A, Shestakova E, et al. Ecosystem services of the cryogenic environments: identification, evaluation and monetisation-A review. J Water Land Dev. 2022. p. 1–8. https://doi.org/10.24425/jwld.2021.139937
  66. 66. Rosa-Schleich J, Loos J, Mußhoff O, Tscharntke T. Ecological-economic trade-offs of diversified farming systems– A review. Ecol Econ. 2019;160:251–63. https://doi.org/10.1016/j.ecolecon.2019.03.002
  67. 67. Hayek LA, Buzas MA. Surveying natural populations: quantitative tools for assessing biodiversity. Columbia University Press; 2010. https://doi.org/10.7312/haye14620
  68. 68. Carrasco RC, Candela G, Marco-Such M. Measuring the diversity of data and metadata in digital libraries. arXiv preprint arXiv:230101193. 2023; https://doi.org/10.48550/arXiv.2301.01193
  69. 69. Jagroo V, Minott A, James L. A time series analysis using Shannon Index of annual domestic crop production and area planted in Jamaica from 2007 to 2021. In: Proceedings of the 4th International Conference on Statistics: theory and applications (ICSTA'22); 2022 Jul 28-30. p. 166. Available from: https://doi.org/10.11159/icsta22.166
  70. 70. Thornbrugh D, Infante D, Tsang Y. Regional trends of biodiversity indices in the temperate mesic United States: testing for influences of anthropogenic land use on stream fish while controlling for natural landscape variables. Water. 2023;15(8):1591. https://doi.org/10.3390/w15081591
  71. 71. Dardonville M, Legrand B, Clivot H, Bernardin C, Bockstaller C, Therond O. Assessment of ecosystem services and natural capital dynamics in agroecosystems. Ecosyst Serv. 2022;54:101415. https://doi.org/10.1016/j.ecoser.2022.101415
  72. 72. Ratnadass A, Fernandes P, Avelino J, Habib R. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agron Sustain Dev. 2012;32:273–303. https://doi.org/10.1007/s13593-011-0022-4
  73. 73. Muchane MN, Sileshi GW, Gripenberg S, Jonsson M, Pumarino L, Barrios E. Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agric Ecosyst Environ. 2020;295:106899. https://doi.org/10.1016/j.agee.2020.106899
  74. 74. Karp DS, Chaplin-Kramer R, Meehan TD, Martin EA, DeClerck F, Grab H, et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc Natl Acad Sci. 2018;115(33):E7863–70. https://doi.org/10.1073/pnas.1800042115
  75. 75. White HJ, Caplat P, Emmerson MC, Yearsley JM. Predicting future stability of ecosystem functioning under climate change. Agric Ecosyst Environ. 2021;320:107600. https://doi.org/10.1016/j.agee.2021.107600
  76. 76. Rehman A, Farooq M, Lee DJ, Siddique KHM. Sustainable agricultural practices for food security and ecosystem services. Environ Sci Poll Res. 2022;29(56):84076–95. https://doi.org/10.1007/s11356-022-23635-z
  77. 77. Martin-Lopez B, Felipe-Lucia MR, Bennett EM, Norstrom A, Peterson G, Plieninger T, et al. A novel telecoupling framework to assess social relations across spatial scales for ecosystem services J Environ Manag. 2019;241:251–63. https://doi.org/10.1016/j.jenvman.2019.04.029
  78. 78. Wood SLR, Jones SK, Johnson JA, Brauman KA, Chaplin-Kramer R, Fremier A, et al. Distilling the role of ecosystem services in the sustainable development goals. Ecosyst Serv. 2018;29:70–82. https://doi.org/10.1016/j.ecoser.2017.10.010
  79. 79. Dangles O, Casas J. Ecosystem services provided by insects for achieving sustainable development goals. Ecosyst Serv. 2019;35:109–15. https://doi.org/10.1016/j.ecoser.2018.12.002
  80. 80. Wurtsbaugh WA, Paerl HW, Dodds WK. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Rev: Water. 2019;6(5):e1373. https://doi.org/10.1002/WAT2.1373
  81. 81. Dainese M, Martin EA, Aizen MA, Albrecht M, Bartomeus I, Bommarco R, et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci Adv. 2019;5(10): eaax0121. https://doi.org/10.1126/sciadv.aax0121
  82. 82. Bullock JM, McCracken ME, Bowes MJ, Chapman RE, Graves AR, Hinsley SA, et al. Does agri-environmental management enhance biodiversity and multiple ecosystem services?: A farm-scale experiment. Agric Ecosyst Environ. 2021;320:107582. https://doi.org/10.1016/j.agee.2021.107582
  83. 83. Beillouin D, Ben-Ari T, Malezieux E, Seufert V, Makowski D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob Chang Biol. 2021;27(19):4697–710. https://doi.org/10.1111/gcb.15747
  84. 84. Liu C, Plaza-Bonilla D, Coulter JA, Kutcher HR, Beckie HJ, Wang L, et al. Diversifying crop rotations enhances agroecosystem services and resilience. Adv Agron. 2022;173:299–335. https://doi.org/10.1016/bs.agron.2022.02.007
  85. 85. Lichtenberg EM, Kennedy CM, Kremen C, Batary P, Berendse F, Bommarco R, et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob Chang Biol. 2017;23(11):4946–57. https://doi.org/10.1111/gcb.13714
  86. 86. Kerr RB, Madsen S, Stuber M, Liebert J, Enloe S, Borghino N, et al. Can agroecology improve food security and nutrition? A review. Glob Food Secur. 2021;29:100540. https://doi.org/10.1016/j.gfs.2021.100540
  87. 87. Tittonell PA, Hara SM, Alvarez VE, Aramayo MVDL, Bruzzone OA, Easdale MH, et al. Ecosystem services and disservices associated with pastoral systems from Patagonia, Argentina– A review. Cah Agric. 2021;30:43‎ .https://doi.org/10.1051/cagri/2021029
  88. 88. Rauw WM, Gomez-Raya L, Star L, Overland M, Delezie E, Grivins M, et al. Sustainable development in circular agriculture: An illustrative bee- legume- poultry example. Sustain Dev. 2023;31(2):639–48. https://doi.org/10.1002/sd.2435
  89. 89. Salve A, Tiwari C, Baghele L. Impact of agroforestry systems: A review. Asian J Microbiol Biotechnol Environ Sci. 2022;24(2):214–23. http://doi.org/10.53550/AJMBES.2022.v24i02.002
  90. 90. Calegari A, de Araujo AG, Tiecher T, Bartz MLC, Lanillo RF, dos Santos DR, et al. No-till farming systems for sustainable agriculture in South America. No-till Farming Systems for Sustainable Agriculture: challenges and opportunities. 2020;533–65. https://doi.org/10.1007/978-3-030-46409-7_30
  91. 91. Crittenden SJ, Huerta E, De Goede RGM, Pulleman MM. Earthworm assemblages as affected by field margin strips and tillage intensity: An on-farm approach. European J Soil Biol. 2015;66:49–56. https://doi.org/10.1016/j.ejsobi.2014.11.007
  92. 92. Blubaugh CK, Hagler JR, Machtley SA, Kaplan I. Cover crops increase foraging activity of omnivorous predators in seed patches and facilitate weed biological control. Agric Ecosyst Environ. 2016;231:264–70. https://doi.org/10.1016/j.agee.2016.06.045
  93. 93. Chen J, Li J, Yang Y, Wang Y, Zhang Y, Wang P. Effects of conventional and organic agriculture on soil arbuscular mycorrhizal fungal community in low-quality farmland. Front Microbiol. 2022;13:914627. https://doi.org/10.3389/fmicb.2022.914627
  94. 94. Skinner C, Gattinger A, Krauss M, Krause HM, Mayer J, Van Der Heijden MGA, et al. The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci Rep. 2019;9(1):1702. https://doi.org/10.1038/s41598-018-38207-w
  95. 95. Niggli U. Sustainability of organic food production: challenges and innovations. Proc Nutr Soc. 2015;74(1):83–88. https//doi.org/10.1017/S0029665114001438
  96. 96. Schrama M, De Haan JJ, Kroonen M, Verstegen H, Van der Putten WH. Crop yield gap and stability in organic and conventional farming systems. Agric Ecosyst Environ. 2018;256:123–30. https://doi.org/10.1016/j.agee.2017.12.023
  97. 97. Mondelaers K, Aertsens J, Van Huylenbroeck G. A meta-analysis of the differences in environmental impacts between organic and conventional farming. British Food J. 2009;111(10):1098–119. https://doi.org/10.1108/00070700910992925
  98. 98. Khatri S, Dubey S, Shivay YS, Jelsbak L, Sharma S. Organic farming induces changes in bacterial community and disease suppressiveness against fungal phytopathogens. Appl Soil Ecol. 2023;181:104658. https://doi.org/10.1016/j.apsoil.2022.104658
  99. 99. Siswadi E, Sulistyono NBE, Firgiyanto R, Dinata GF. Exploration of bacterial diversity from the soil of citrus plantations applied with organic fertilizer and salicylic acid. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing; 2023. p. 012019. Available from: https://doi.org/10.1088/1755-1315/1168/1/012019
  100. 100. Santoni M, Verdi L, Imran Pathan S, Napoli M, Dalla Marta A, Dani FR, et al. Soil microbiome biomass, activity, composition and CO2 emissions in a long-term organic and conventional farming systems. Soil Use Manage. 2023;39(1):588–605. https://doi.org/10.1111/sum.12836
  101. 101. Young RR, Wilson B, Harden S, Bernardi A. Accumulation of soil carbon under zero tillage cropping and perennial vegetation on the Liverpool Plains, eastern Australia. Soil Res. 2009;47(3):273–85. https://doi.org/10.1071/SR08104
  102. 102. Van Oudenhove M, Martinez-Mena M, Almagro M, Diaz-Pereira E, Carrillo E, de Vente J, et al. The Impact of Regenerative Agriculture on Provisioning Ecosystem Services: An Example in Southeast Spain. In: Biology and Life Sciences Forum. MDPI; 2024. p. 28. https://doi.org/10.3390/IOCAG2023-17336
  103. 103. Martinez E, Fuentes JP, Pino V, Silva P, Acevedo E. Chemical and biological properties as affected by no-tillage and conventional tillage systems in an irrigated Haploxeroll of Central Chile. Soil Till Res. 2013;126:238–45. https://doi.org/10.1016/j.still.2012.07.014
  104. 104. Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, et al. Limited potential of no-till agriculture for climate change mitigation. Nat Clim Chang. 2014;4(8):678–83. https://doi.org/10.1038/nclimate2292
  105. 105. Wurz A, Tscharntke T, Martin DA, Osen K, Rakotomalala AANA, Raveloaritiana E, et al. Win-win opportunities combining high yields with high multi-taxa biodiversity in tropical agroforestry. Nat Commun. 2022;13(1):4127. https://doi.org/10.1038/s41467-022-30866-8
  106. 106. Duddigan S, Collins CD, Hussain Z, Osbahr H, Shaw LJ, Sinclair F, et al. Impact of zero budget natural farming on crop yields in Andhra Pradesh, SE India. Sustain. 2022;14(3):1689. https://doi.org/10.3390/su14031689
  107. 107. Schulte LA, Niemi J, Helmers MJ, Liebman M, Arbuckle JG, James DE, et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proc Natl Acad Sci. 2017;114(42):11247–52. https://doi.org/10.1073/pnas.1620229114
  108. 108. Jayaraman S, Dang YP, Naorem A, Page KL, Dalal RC. Conservation agriculture as a system to enhance ecosystem services. Agric. 2021;11(8):718. https://doi.org/10.3390/agriculture11080718
  109. 109. Barrios E, Gemmill-Herren B, Bicksler A, Siliprandi E, Brathwaite R, Moller S, et al. The 10 Elements of Agroecology: enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosyst People. 2020;16(1):230–47. https://doi.org/10.1080/26395916.2020.1808705
  110. 110. Gaba S, Gabriel E, Chadœuf J, Bonneu F, Bretagnolle V. Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Sci Rep. 2016;6(1):30112. https://doi.org/10.1038/srep30112
  111. 111. Woodcock BA, Bullock JM, McCracken M, Chapman RE, Ball SL, Edwards ME, et al. Spill-over of pest control and pollination services into arable crops. Agric Ecosyst Environ. 2016;231:15–23. https://doi.org/10.1016/j.agee.2016.06.023
  112. 112. Heal G. Valuing ecosystem services. Ecosyst. 2000;24–30. https://www.jstor.org/stable/3658664
  113. 113. Wang F, Cui H, He F, Liu Q, Zhu Q, Wang W, et al. The green manure (Astragalus sinicus L.) improved rice yield and quality and changed soil microbial communities of rice in the karst mountains area. Agron. 2022;12(8):1851. https://doi.org/10.3390/agronomy12081851
  114. 114. Crowder DW, Reganold JP. Financial competitiveness of organic agriculture on a global scale. Proc Natl Acad Sci. 2015;112(24):7611–16. https://doi.org/10.1073/pnas.1423674112
  115. 115. Lorenz K, Lal R. Environmental impact of organic agriculture. Adv Agron. 2016;139:99–152. https://doi.org/10.1016/bs.agron.2016.05.003
  116. 116. Trickett T, Warner DJ. Earthworm abundance increased by mob-grazing zero-tilled arable land in south-east england. Earth. 2022;3(3):895–906. https://doi.org/10.3390/earth3030052
  117. 117. Sun R, Guo X, Wang D, Chu H. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl Soil Ecol. 2015;95:171–78. https://doi.org/10.1016/j.apsoil.2015.06.010
  118. 118. Crystal-Ornelas R, Thapa R, Tully KL. Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis. Agric Ecosyst Environ. 2021;312:107356. https://doi.org/10.1016/j.agee.2021.107356
  119. 119. Zhou M, Xiao Y, Zhang X, Xiao L, Ding G, Cruse RM, et al. Fifteen years of conservation tillage increases soil aggregate stability by altering the contents and chemical composition of organic carbon fractions in Mollisols. Land Degrad Dev. 2022;33(15):2932–44. https://doi.org/10.1002/ldr.4365
  120. 120. Hamza A, Farooq MO, Razaq M, Shah FM. Organic farming of maize crop enhances species evenness and diversity of hexapod predators. Bull Entomol Res. 2023;113(4):565–73. https://doi.org/10.1017/S000748532300024X
  121. 121. Blanco-Canqui H, Francis CA, Galusha TD. Does organic farming accumulate carbon in deeper soil profiles in the long term? Geoderma. 2017;288:213–21. https://doi.org/10.1016/j.geoderma.2016.10.031
  122. 122. Duran AP, Smith M, Trippier B, Godoy K, Parra M, Lorca M, et al. Implementing ecosystem service assessments within agribusiness: Challenges and proposed solutions. J Appl Ecol. 2022;59(10):2468–75. https://doi.org/10.1111/1365-2664.14250
  123. 123. Spake R, Lasseur R, Crouzat E, Bullock JM, Lavorel S, Parks KE, et al. Unpacking ecosystem service bundles: towards predictive mapping of synergies and trade-offs between ecosystem services. Glob Environ Chang. 2017;47:37–50. https://doi.org/10.1016/j.gloenvcha.2017.08.004
  124. 124. Dhuldhaj UP, Singh R, Singh VK. Pesticide contamination in agro-ecosystems: toxicity, impacts, and bio-based management strategies. Environ Sci Pollut Res. 2023;30(4):9243–70. https://doi.org/10.1007/s11356-022-24381-y

Downloads

Download data is not yet available.