Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Antihypertensive, vasorelaxant and antidyslipidemic effects of Santolina africana in rats

DOI
https://doi.org/10.14719/pst.6586
Submitted
7 December 2024
Published
31-07-2025 — Updated on 15-08-2025
Versions

Abstract

Hypertension and dyslipidemia are major causes of cardiovascular disease. Medicinal plants continue to be widely used as therapeutic options for the management of cardiovascular diseases. Santolina africana is a medicinal and aromatic plant of the Asteraceae family, a plant family widely recognized for its beneficial pharmacological effects, particularly in managing cardiovascular diseases. This study aimed to evaluate the antihypertensive, vasorelaxant and antidyslipidemic properties of the aqueous extract of S. africana in animal models of hypertension and dyslipidemia. Normotensive and L-NAME-induced hypertensive rats were orally administered the aqueous extract of S. africana (SAAE) at the doses of 100 and 200 mg/kg and systolic, diastolic and mean blood pressure were measured. The vasorelaxant activity of SAAE and underlying mechanism were evaluated on isolated aortic rings with and without endothelium. Additionally, the antidyslipidemic effect of SAAE (250 and 500 mg/kg) was assessed in Triton WR-1339 induced hyperlipidemic model in rats. Results showed a significant, dose-dependent reduction in blood pressure values in hypertensive rats following SAAE administration. The vasorelaxant effect appeared to be endothelium-dependent and likely mediated by nitric oxide pathway. Furthermore, in Triton WR-1339-induced hyperlipidemic rats, the SAAE significantly lowered plasma levels of total cholesterol, triglycerides and LDL-cholesterol. These findings suggest that S. africana possesses significant antihypertensive, vasorelaxant and antidyslipidemic properties, highlighting its potential as a promising natural therapeutic agent for managing cardiovascular and metabolic disorders.

References

  1. 1. Charchar FJ, Prestes PR, Mills C, Ching SM, Neupane D, Marques FZ, et al. Lifestyle management of hypertension: International society of hypertension position paper endorsed by the World hypertension league and European society of hypertension. J Hypertens. 2024;42(1):23–49. https://doi.org/10.1097/HJH.0000000000003563
  2. 2. Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. Hypertension. 2020;75(2):285–92. https://doi.org/10.1161/HYPERTENSIONAHA.119.14240
  3. 3. World Health Organization. Cardiovascular diseases (CVDs) [Internet]. Geneva: WHO; 2023 [cited 2025 Apr 28]. Available from: https://www.who.int/health-topics/cardiovascular-diseases
  4. 4. Zhang ZY, Yu YL, Asayama K, Hansen TW, Maestre GE, Staessen JA. Starting antihypertensive drug treatment with combination therapy: Controversies in hypertension-con side of the argument. Hypertension. 2021;77(3):788–98. https://doi.org/10.1161/HYPERTENSIONAHA.120.12858
  5. 5. Guerrero-Garcia C, Rubio-Guerra AF. Combination therapy in the treatment of hypertension. Drugs Context. 2018;7:212531. https://doi.org/10.7573/dic.212531
  6. 6. Kiriyama A, Honbo A, Nishimura A, Shibata N, Iga K. Pharmacokinetic-pharmacodynamic analyses of antihypertensive drugs, nifedipine and propranolol, in spontaneously hypertensive rats to investigate characteristics of effect and side effects. Regul Toxicol Pharmacol. 2016;76:21–29. https://doi.org/10.1016/j.yrtph.2016.01.003
  7. 7. Wyszynska J, Łuszczki E, Sobek G, Mazur A, Deren K. Association and risk factors for hypertension and dyslipidemia in young adults from Poland. Int J Environ Res Public Health. 2023;20(2):982. https://doi.org/10.3390/ijerph20020982
  8. 8. Borghi C, Fogacci F, Agnoletti D, Cicero AF. Hypertension and dyslipidemia combined therapeutic approaches. High Blood Press Cardiovasc Prev. 2022;29(3):221–30. https://doi.org/10.1007/s40292-022-00507-8
  9. 9. Koon CM, Fong S, Wat E, Wang YP, Cheung DW, Bik-San Lau C, et al. Mechanisms of the dilator action of the Erigerontis herba on rat aorta. J Ethnopharmacol. 2014;155(3):1561–67.https://doi.org/10.1016/j.jep.2014.07.053
  10. 10. Michel J, Abd Rani NZ, Husain K. A review on the potential use of medicinal plants from Asteraceae and Lamiaceae plant family in cardiovascular diseases. Front Pharmacol. 2020;11:852. https://doi.org/10.3389/fphar.2020.00852
  11. 11. Khammassi M, Mansour MB, Laabidi A, Amri I, Boudkhili M, Hamrouni L, et al. Antifungal activity of essential oils and crude extracts of Santolina africana from Tunisia and Morocco. J Mater Environ Sci. 2018;9(10):2963–69.
  12. 12. Ait Youssef M. Plantes médicinales de Kabylie. Paris: Editions Ibis Press; 2006
  13. 13. Bellakhdar J. La pharmacopée marocaine traditionnelle. Médicine arabe ancienne et savoirs populaires. Paris: Ibis Press; 1997
  14. 14. Chermat S, Gharzouli R. Ethnobotanical study of medicinal flora in the Northeast of Algeria—An empirical knowledge in Djebel Zdimm (Setif). J Mater Sci Eng. 2015;5:50–59. https://doi.org/10.17265/2161-6213/2015.1-2.007
  15. 15. Qabouche A, Amssayef A, Bouadid I, Lahrach N, El-Haidani A, Eddouks M. Antidiabetic and antidyslipidemic effects of Artemisia mesatlantica, an endemic plant from Morocco. Cardiovasc Haematol Disord Drug Targets. 2023;23(1):50–63. https://doi.org/10.2174/1871529X23666230803113616
  16. 16. Ajebli M, Eddouks M. Pharmacological and phytochemical study of Mentha suaveolens Ehrh. in normal and streptozotocin-induced diabetic rats. Nat Prod J. 2018;8(3):213–27. https://doi.org/10.2174/221031550866618032
  17. 7120434
  18. 17. Bouhlali ED, Alem C, Zegzouti YF. Antioxidant and anti-hemolytic activities of phenolic constituents of six Moroccan date fruit (Phoenix dactylifera L.) syrups. Biotechnol Indian J. 2016;12(1):45–52. https://doi.org/10.17957/JGIASS/3.2-3.709
  19. 18. Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003;81(3):321–26. https://doi.org/10.1016/S0308-8146(02)00423-5
  20. 19. Broadhurst RB, Jones WT. Analysis of condensed tannins using acidified vanillin. J Sci Food Agric. 1978;29(9):788–94. https://doi.org/10.1002/jsfa.2740290908
  21. 20. Organisation for Economic Co-Operation and Development. OECD guideline for testing of chemicals: Up-and-Down Procedure. Paris: OECD; 2001. p. 1–4
  22. 21. Bouadid I, Qabouche A, Eddouks M. Antihypertensive and ACE-2 inhibitory effects of Daphne gnidium in rats. Cardiovasc Hematol Agents Med Chem. 2024;22(4):432–40. https://doi.org/10.2174/0118715257251651231212045407
  23. 22. Ajebli M, Eddouks M. Antihypertensive activity of Petroselinum crispum through inhibition of vascular calcium channels in rats. J Ethnopharmacol. 2019;242:112039. https://doi.org/10.1016/j.jep.2019.112039
  24. 23. Amssayef A, Eddouks M. In vivo antihyperglycemic and antidyslipidemic effects of L-tartaric acid. Cardiovasc Haematol Disord Drug Targets. 2022;22(3):185–98. https://doi.org/10.2174/1871529X23666221202091848
  25. 24. Dalal JJ, Padmanabhan TN, Jain P, Patil S, Vasnawala H, Gulati A. LIPITENSION: Vnterplay between dyslipidemia and hypertension. Indian J Endocrinol Metab. 2012;16(2):240–45. https://doi.org/10.4103/2230-8210.93742
  26. 25. Susilawati Y, Febriyanti RM, Febrina E, Chaerunisaa A, Sumiwi SA. A comprehensive in vivo study of the antihypertensive properties and toxicity of roselle (Hibiscus sabdariffa L.). Pharmacia. 2023;12(4):1521–30. https://doi.org/10.3897/pharmacia.70.e109119
  27. 26. Nasri H, Shirzad H. Toxicity and safety of medicinal plants. J Herbmed Pharmacol. 2013;2(2):21–22.
  28. 27. Aamir K, Khan HU, Hossain CF, Afrin MR, Shaik I, Salleh N, et al. Oral toxicity of arjunolic acid on hematological, biochemical and histopathological investigations in female Sprague Dawley rats. PeerJ. 2019;7:e8045. https://doi.org/10.7717/peerj.8045
  29. 28. Duff F, Greenfield AD, Shepherd JT, Thompson ID, Whelan RF. The response to vasodilator substances of the blood vessels in fingers immersed in cold water. J Physiol. 1953;121(1):46. https://doi.org/10.1113/jphysiol.1953.
  30. sp004929
  31. 29. Furchgott RF. The obligatory role of endothelial cells in the relaxation of artery smooth muscle by acetylcholine. Nature. 1980;288:373–76. https://doi.org/10.1038/288373a0
  32. 30. Luo LF, Wu WH, Zhou YJ, Yan J, Yang GP, Ouyang DS. Antihypertensive effect of Eucommia ulmoides Oliv. extracts in spontaneously hypertensive rats. J Ethnopharmacol. 2010;129(2):238–43. https://doi.org/10.1016/j.jep.2010.03.019
  33. 31. Murad F. Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest. 1986;78(1):1–5. https://doi.org/10.1172/JCI112536
  34. 32. Arias-Duran L, Estrada-Soto S, Hernández-Morales M, Millán-Pacheco C, Navarrete-Vázquez G, Villalobos-Molina R, et al. Antihypertensive and vasorelaxant effect of leucodin and achillin isolated from Achillea millefolium through calcium channel blockade and NO production: in vivo, functional ex vivo and in silico studies. J Ethnopharmacol.
  35. 2021;273:113948. https://doi.org/10.1016/j.jep.2021.113948
  36. 33. Valero MS, Nunez S, Les F, Castro M, Gomez-Rincon C, Arruebo MP, et al. The potential role of everlasting flower (Helichrysum stoechas Moench) as an antihypertensive agent: Vasorelaxant effects in the rat aorta. Antioxidants. 2022;11(6):1092. https://doi.org/10.3390/antiox11061092
  37. 34. Naoufel Z, Hebi M, Ajebli M, Michel JB, Eddouks M. In vitro vasorelaxant effect of Artemisia herba-alba Asso. in spontaneously hypertensive rats. Cardiovasc Hematol Agents Med Chem. 2016;14(3):190–96. https://doi.org/10.2174/1871525714666161216100044
  38. 35. Janicki BW, Aron SA. Effect of Triton WR-1339 on lipoproteins and lipoprotein lipase of guinea pig plasma. Proc Soc Exp Biol Med. 1962;109(3):507–09. https://doi.org/10.3181/00379727-109-27250
  39. 36. Oparil S, Zaman MA, Calhoun DA. Pathogenesis of hypertension. Ann Intern Med. 2003;139(9):761–76. https://doi.org/10.7326/0003-4819-139-9-200311040-00011
  40. 37. Sesso HD, Buring JE, Chown MJ, Ridker PM, Gaziano JM. A prospective study of plasma lipid levels and hypertension in women. Arch Intern Med. 2005;165(20):2420–27. https://doi.org/10.1001/archinte.165.20.2420
  41. 38. Huang H, Mai W, Liu D, Hao Y, Tao J, Dong Y. The oxidation ratio of LDL: a predictor for coronary artery disease. Dis Markers. 2008;24(6):341–49. https://doi.org/10.1155/2008/371314
  42. 39. Khatana C, Saini NK, Chakrabarti S, Saini V, Sharma A, Saini RV, et al. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid Med Cell Longev. 2020;2020:5245308. https://doi.org/10.1155/
  43. 2020/5245308
  44. 40. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 Suppl 1):III-27. https://doi.org/10.1161/01.CIR.0000131515.03336.f8
  45. 41. Liwa AC, Barton EN, Cole WC, Nwokocha CR. Bioactive plant molecules, sources and mechanism of action in the treatment of cardiovascular disease. In: Pharmacognosy. Academic Press; 2017. p. 315–36 https://doi.org/10.1016/B978-0-12-802104-0.00015-9
  46. 42. Din SR, Saeed S, Khan SU, Kiani FA, Alsuhaibani AM, Zhong M. Bioactive compounds (BACs): A novel approach to treat and prevent cardiovascular diseases. Curr Probl Cardiol. 2023;48(7):101664. https://doi.org/10.1016/j.cpcardiol.
  47. 2023.101664
  48. 43. Tundis R, Loizzo MR. A review of the traditional uses, phytochemistry and biological activities of the genus Santolina. Planta Med. 2018;84(9–10):627–37. https://doi.org/10.1055/a-0585-6153
  49. 44. Rabiaa FD, Lmachraa I, Naima FD, Ezoubeiri A, Gadhi CA. Huile essentielle des parties aériennes de Santolina africana. Bull Soc Pharm Bordeaux. 2011;150(1–4):47–60.
  50. 45. Lmachraa I, Fdil R, Fdil N, Mouzdahir A. Huile essentielle de Santolina africana (Jord. & Fourr.) du Maroc: composition chimique et isolement des deux principaux constituants. J Mater Environ Sci. 2014;5(1):67–72.
  51. 46. Santos MR, Moreira FV, Fraga BP, Souza DP, Bonjardim LR, Quintans-Junior LJ. Cardiovascular effects of monoterpenes: A review. Rev Bras Farmacogn. 2011;21:764–71.https://doi.org/10.1590/S0102-695X2011005000119
  52. 47. Alves-Silva JM, Zuzarte M, Marques C, Salgueiro L, Girao H. Protective effects of terpenes on the cardiovascular system: current advances and future perspectives. Curr Med Chem. 2016;23(40):4559–600. https://doi.org/10.2174/0929867323666160907123559
  53. 48. Moon HK, Kang P, Lee HS, Min SS, Seol GH. Effects of 1,8-cineole on hypertension induced by chronic exposure to nicotine in rats. J Pharm Pharmacol. 2014;66(5):688–93. https://doi.org/10.1111/jphp.12195
  54. 49. Pinto NV, Assreuy AM, Coelho-de-Souza AN, Ceccatto VM, Magalhães PJ, Lahlou S, et al. Endothelium-dependent vasorelaxant effects of the essential oil from aerial parts of Alpinia zerumbet and its main constituent 1,8-cineole in rats. Phytomedicine. 2009;16(12):1151–55. https://doi.org/10.1016/j.phymed.2009.04.007
  55. 50. Lahlou S, Figueiredo AF, Magalhaes PJ, Leal-Cardoso JH. Cardiovascular effects of 1,8-cineole, a terpenoid oxide present in many plant essential oils, in normotensive rats. Can J Physiol Pharmacol. 2002;80(12):1125–31. https://doi.org/10.1139/y02-142
  56. 51. Kumar MS, Kumar S, Raja B. Antihypertensive and antioxidant potential of borneol—a natural terpene in L-NAME-induced hypertensive rats. Int J Pharm Biol Arch. 2010;1:271–79.
  57. 52. Santos SE, Ribeiro FP, Menezes PM, Duarte-Filho LA, Quintans JS, Quintans-Junior LJ, et al. New insights on relaxant effects of (–)-borneol monoterpene in rat aortic rings. Fundam Clin Pharmacol. 2019;33(2):148–58. https://doi.org/10.1111/fcp.12417
  58. 53. Silva-Filho JC, Oliveira NN, Arcanjo DD, Quintans-Junior LJ, Cavalcanti SC, Santos MR, et al. Investigation of mechanisms involved in (–)-borneol-induced vasorelaxant response on rat thoracic aorta. Basic Clin Pharmacol Toxicol. 2012;110(2):171–77. https://doi.org/10.1111/j.1742-7843.2011.00784.x
  59. 54. Clegg RJ, Middleton B, Bell GD, White DA. The mechanism of cyclic monoterpene inhibition of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase in vivo in the rat. J Biol Chem. 1982;257(5):2294–99. https://doi.org/
  60. 10.1016/S0021-9258(18)34920-2

Downloads

Download data is not yet available.