Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Assessing the carbon management index across land use changes in Kolli Hills, Eastern Ghats, Tamil Nadu

DOI
https://doi.org/10.14719/pst.6626
Submitted
10 December 2024
Published
21-04-2025
Versions

Abstract

Alterations in land patterns in Kolli Hills (KH) of the Eastern Ghats, Tamil Nadu (TN), transitioning from native ecosystems to various land uses, have notably diminished soil carbon concentrations. To measure this reduction, the carbon management index (CMI) was evaluated across key land-use categories, including agricultural system (AS), horticultural system (HS), plantation system (PS), thorn forest (TF), deciduous forest (DF) and evergreen forest (EF). The analysis focused on total organic carbon (TOC), total carbon (TC), total inorganic carbon (TIC) and carbon pools with varying degrees of lability, including less labile carbon (LLC), labile carbon (LC), very labile carbon (VLC) and non-labile carbon (NLC). The findings indicated that EF's carbon pools were markedly higher (p < 0.05) than AS and HS. The contribution of LC, VLC, LLC and NLC to TOC was highest in EF and DF, while it was lowest in AS and HS. The TOC at 15 cm depth was highest in the surface soils of EF (106.17 g kg-1), with a gradual decline in concentration with increasing depth. This highlights carbon pool degradation from land-use change, quantified by the CMI. When EF was used as the reference ecosystem, the CMI was higher in DF (51.93) and TF (45.69) at a 30 cm depth, while AS (10.75) and HS (12.46) showed a much lower CMI. These findings highlight the need to implement effective carbon management strategies in KH to restore soil vitality and safeguard biodiversity.

References

  1. 1. Nath PC, Nath AJ, Reang D, Lal R, Das AK. Tree diversity, soil organic carbon lability and ecosystem carbon storage under a fallow age chronosequence in North East India. Environ Sustain Indic. 2021;10:100122. https://doi.org/10.1016/j.indic.2021.100122
  2. 2. Chaplot V, Bouahom B, Valentin C. Soil organic carbon stocks in Laos: spatial variations and controlling factors. Glob Chang Biol. 2010;16(4):1380‒93. https://doi.org/10.1111/j.1365-2486.2009.02013.x
  3. 3. Deepana P, Duraisamy S, Subramanium T, Anandham R, Alagarswamy S, Kumaraperumal R, et al. Anthropogenic land use impacts carbon dynamics in Kolli hills, Eastern Ghats, India. Environ Earth Sci. 2024;83:625. https://doi.org/10.1007/s12665-024-11928-0
  4. 4. Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM. Mineral control of soil organic carbon storage and turnover. Nature. 1997;389:170‒73. https://doi.org/10.1038/38260
  5. 5. Salisu MA, Ismail F, Bamiro NB, Luqman H. Sustainable agriculture for food safety, security and sufficiency. In: Raimi L, Olatidoye OP, Said TFH, editors. Agripreneurship and the dynamic agribusiness value chain. Singapore: Springer; 2024. p. 29–60. https://doi.org/10.1007/978-981-97-7429-6_3
  6. 6. Sarkar T, Sengupta S, Kanthal S, Kundu S. Climate change mitigation through agroforestry improves natural resource and livelihood security. In: Jatav HS, Rajput VD, Minkina T, Van Hullebusch ED, Dutta A, editors. Agroforestry to combat global challenges. Sustainable development and biodiversity, vol 36. Singapore: Springer; 2024. p. 219‒46. https://doi.org/10.1007/978-981-99-7282-1_12
  7. 7. Sahoo UK, Singh SL, Gogoi A, Kenye A, Sahoo SS. Active and passive soil organic carbon pools as affected by different land use types in Mizoram, Northeast India. PloS One. 2019;14(7):e0219969. https://doi.org/10.1371/journal.pone.0219969
  8. 8. Sanderman J, Hengl T, Fiske GJ. Soil carbon debt of 12000 years of human land use. Proc Natl Acad Sci USA. 2017;114(36):9575‒80. https://doi.org/10.1073/pnas.1706103114
  9. 9. Lal R, Griffin M, Apt J, Lave L, Morgan MG. Managing soil carbon. Sci. 2004;304(5669):393. https://doi.org/10.1126/science.1093079
  10. 10. Lal R, Smith P, Jungkunst HF, Mitsch WJ, Lehmann J, Nair PR, et al. The carbon sequestration potential of terrestrial ecosystems. J Soil Water Conserv. 2018;73(6):145A‒52A. https://doi.org/10.2489/jswc.73.6.145A
  11. 11. Lal R. Sequestering carbon in soils of agro-ecosystems. Food Policy. 2011;36(S1):S33‒S39. https://doi.org/10.1016/j.foodpol.2010.12.001
  12. 12. Zhang GS, Ni ZW. Winter tillage impacts on soil organic carbon, aggregation and CO2 emission in a rainfed vegetable cropping system of the mid–Yunnan plateau, China. Soil Till Res. 2017;165:294‒301. https://doi.org/10.1016/j.still.2016.09.008
  13. 13. Sainepo BM, Gachene CK, Karuma A. Assessment of soil organic carbon fractions and carbon management index under different land use types in Olesharo Catchment, Narok County, Kenya. Carbon Balance Manag. 2018;13:4. https://doi.org/10.1186/s13021-018-0091-7
  14. 14. Matzek V, Lewis D, O’Geen A, Lennox M, Hogan SD, Feirer ST, et al. Increases in soil and woody biomass carbon stocks as a result of rangeland riparian restoration. Carbon Balance Manag. 2020;15:1‒5. https://doi.org/10.1186/s13021-020-00150-7
  15. 15. Daw son JJ, Smith P. Carbon losses from soil and its consequences for land-use management. Sci Total Environ. 2007;382(2-3):165‒90. https://doi.org/10.1016/j.scitotenv.2007.03.023
  16. 16. Haynes RJ. Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron. 2005;5:221‒68. https://doi.org/10.1016/S0065-2113(04)85005-3
  17. 17. Padbhushan R, Kumar U, Sharma S, Rana DS, Kumar R, Kohli A, et al. Impact of land-use changes on soil properties and carbon pools in India: A meta-analysis. Front Environ Sci. 2022;9:794866. https://doi.org/10.3389/fenvs.2021.794866
  18. 18. Smith P. Land use change and soil organic carbon dynamics. Nutr Cycl Agroecosyst. 2008;81:169‒78. https://doi.org/10.1007/s10705-007-9138-y
  19. 19. Dawson JJC. Loss of soil carbon to the atmosphere via inland surface waters. In: Lal R, Lorenz K, Hüttl R, Schneider B, von Braun J, editors. Ecosystem services and carbon sequestration in the biosphere. Dordrecht: Springer; 2013. p. 183‒208. https://doi.org/10.1007/978-94-007-6455-2_9
  20. 20. Poeplau C, Don A. A simple soil organic carbon level metric beyond the organic carbon‐to‐clay ratio. Soil Use Manag. 2023;39(3):1057‒67. https://doi.org/10.1111/sum.12921
  21. 21. Nykamp M, Becker F, Hoelzmann P. Total organic carbon quantification in soils and sediments: performance test of a modified sample preparation method. MethodsX. 2024;13:102934. https://doi.org/10.1016/j.mex.2024.102934
  22. 22. Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37(1):29‒38. http://doi.org/10.1097/00010694-193401000-00003
  23. 23. Chan KY, Bowman A, Oates A. Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Sci. 2001;166(1):61‒67. http://doi.org/10.1097/00010694-200101000-00009
  24. 24. Blair GJ, Lefroy RD, Lisle L. Soil carbon fractions based on their degree of oxidation and the development of a carbon managemanagement index for agricultural systems. Aust J Agric Res. 1995;46(7):1459‒66. https://doi.org/10.1071/AR9951459
  25. 25. Thiyageshwari S, Gayathri P, Krishnamoorthy R, Anandham R, Paul D. Exploration of rice husk compost as an alternate organic manure to enhance the productivity of blackgram in typic haplustalf and typic rhodustalf. Int J Environ Res Public Health. 2018;15(2):358. https://doi.org/10.3390/ijerph15020358
  26. 26. Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, et al. Agriculture, forestry and other land use (AFOLU). In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, et al., editors. Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge (UK): Cambridge University Press; 2014. p. 811‒922. https://doi.org/10.1017/CBO9781107415416.017
  27. 27. Martinez ML, Perez-Maqueo O, Vazquez G, Castillo-Campos G, Garcia-Franco J, Mehltreter K, et al. Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. For Ecol Manage. 2009;258(9):1856‒63. https://doi.org/10.1016/j.foreco.2009.02.023
  28. 28. Kok MT, Alkemade R, Bakkenes M, van Eerdt M, Janse J, Mandryk M, et al. Pathways for agriculture and forestry to contribute to terrestrial biodiversity conservation: A global scenario-study. Biol Conserv. 2018;221:137‒50. https://doi.org/10.1016/j.biocon.2018.03.003
  29. 29. Six J, Paustian K, Elliott ET, Combrink C. Soil structure and organic matter I. Distribution of aggregate‐size classes and aggregate‐associated carbon. Soil Sci Soc Am J. 2000;64(2):681‒89. https://doi.org/10.2136/sssaj2000.642681x
  30. 30. McLauchlan K. The nature and longevity of agricultural impacts on soil carbon and nutrients: A review. Ecosyst. 2006;9:1364‒82. https://doi.org/10.1007/s10021-005-0135-1
  31. 31. Selvi D, Santhy P, Dhakshinamoorthy M. Efficacy of long-term integrated plant nutrient management on important soil properties of an Inceptisol. Madras Agric J. 2003;90:1. https://doi.org/10.29321/MAJ.10.A00155
  32. 32. Gokila B, Manimaran G, Jayanthi D, Sivakumar K, Sridevi G, Thenmozhi S, et al. Long-term fertilization and manuring effects on the nexus between sulphur distribution and SOC in an Inceptisol over five decades under a finger millet–maize cropping system. Sci Rep. 2024;14:9758. https://doi.org/10.1038/s41598-024-60357-3
  33. 33. Hussain A, Ali S, Rizwan M, ur Rehman MZ, Qayyum MF, Wang H, et al. Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol Environ Saf. 2019;173:156‒64. https://doi.org/10.1016/j.ecoenv.2019.01.118
  34. 34. Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, et al. Soil carbon 4 per mille. Geoderma. 2017;292:59‒86. https://doi.org/10.1016/j.geoderma.2017.01.002
  35. 35. Filho LJF, de Oliveira HMR, Barros SVM, Santos DAC, de Oliveira TS. From forest to pastures and silvopastoral systems: Soil carbon and nitrogen stocks changes in northeast Amazonia. Sci Total Environ. 2024;908:168251. https://doi.org/10.1016/j.scitotenv.2023.168251
  36. 36. Bargali SS, Padalia K, Bargali K. Effects of tree fostering on soil health and microbial biomass under different land use systems in the Central Himalayas. Land Degrad Dev. 2019;30(16):1984‒98. https://doi.org/10.1002/ldr.3394
  37. 37. Soleimani A, Hosseini SM, Bavani ARM, Jafari M, Francaviglia R. Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. Catena. 2019;177:227‒37. https://doi.org/10.1016/j.catena.2019.02.018
  38. 38. Jagadesh M, Selvi D, Thiyageshwari S, Kalaiselvi T, Lourdusamy K, Kumaraperumal R. Unravelling the carbon pools and carbon stocks under different land uses of Conoor region in Western Ghats of India. J Appl Nat Sci. 2022;14(3):762‒70. https://doi.org/10.31018/jans.v14i3.3596
  39. 39. Iqbal A, Hussain Q, Mo Z, Hua T, Mustafa AEZMA, Tang X. Vermicompost supply enhances fragrant-rice yield by improving soil fertility and eukaryotic microbial community composition under environmental stress conditions. Microorganisms. 2024;12(6):1252. https://doi.org/10.3390/microorganisms12061252
  40. 40. Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR. Effect of biochar amendment on sorption and leaching of nitrate, ammonium and phosphate in a sandy soil. Chemosphere. 2012;89(11):1467‒71. https://doi.org/10.1016/j.chemosphere.2012.06.002
  41. 41. Kalambukattu JG, Singh R, Patra AK, Arunkumar K. Soil carbon pools and carbon management index under different land use systems in the Central Himalayan region. Acta Agric Scand-B Soil Plant Sci. 2013;63(3):200‒05. https://doi.org/10.1080/09064710.2012.749940
  42. 42. Tang H, Xiao X, Li C, Tang W, Cheng K, Pan X, et al. Effects of different soil tillage systems on soil carbon management index under double‐cropping rice field in southern China. Agron J. 2019;111(1):440‒47. https://doi.org/10.2134/agronj2018.06.0414
  43. 43 .Vieira FCB, Bayer C, Zanatta JA, Dieckow J, Mielniczuk J, He ZL. Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems. Soil Till Res. 2007;96(1-2):195‒204. https://doi.org/10.1016/j.still.2007.06.007
  44. 44. De Bona FD, Bayer C, Dieckow J, Bergamaschi H. Soil quality assessed by carbon management index in a subtropical Acrisol subjected to tillage systems and irrigation. Aust J Soil Res. 2008;46(5):469‒75. https://doi.org/10.1071/SR08018
  45. 45. Zhao F, Yang G, Han X, Feng Y, Ren G. Stratification of carbon fractions and carbon management index in deep soil affected by the grain-to-green program in China. Plos One. 2014;9(6):e99657. https://doi.org/10.1371/journal.pone.0099657
  46. 46. Ghosh BN, Meena VS, Alam NM, Dogra P, Bhattacharyya R, Sharma NK, et al. Impact of conservation practices on soil aggregation and the carbon management index after seven years of maize–wheat cropping system in the Indian Himalayas. Agric Ecosyst Environ. 2016;216:247‒57. https://doi.org/10.1016/j.agee.2015.09.038
  47. 47. Mandal M, Chattarjee ND. Land use alteration strategy to improve forest landscape structural quality in Radhanagar forest range under Bankura district. Eurasian J Forest Sci. 2020;8(1):1‒10. https://doi.org/10.31195/ejejfs.580431
  48. 48. Manimaran G, Jayanthi D, Janaki P, Amirtham D, Gokila B. Long term impact of fertilization and intensive cropping on maize yield and soil nutrient availability under sandy clay loam Soil (Inceptisol). Int J Plant Soil Sci. 2022;34(20):795‒801. https://doi.org/10.9734/ijpss/2022/v34i2031223

Downloads

Download data is not yet available.