Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Antimicrobial and antioxidant properties of fungal endophytes associated with Piper mullesua Buch.-Ham. Ex D. Don.

DOI
https://doi.org/10.14719/pst.6665
Submitted
11 December 2024
Published
19-05-2025
Versions

Abstract

Endophytes are microscopic organisms that live inside plants without causing disease. Among them, endophytic fungi are important biological resources known to produce pharmaceutically important metabolites. Several important bioactive metabolites of endophytic fungal origin have been identified and are being considered for large scale production. Their types and quantity vary from plant to plant; thus, they need to be investigated from new plant sources. Piper mullesua is a vital medicinal plant frequently used by indigenous populations of Arunachal Pradesh, India but not been examined so far. This investigation aims to identify fungal endophytes from the roots of P. mullesua and assess their antimicrobial and antioxidant activities. Total 5 endophytic fungi identified as Colletotrichum gloeosporioides (OR136407), Fusarium oxysporum (OR136409), Fusarium solani (OR136405), Gliocladiopsis tenuis (OR136407) and Penicillium crustosum (PP706771) were isolated from P. mullesua roots. Crude extract of P. crustosum and G. tenuis exhibited significant antimicrobial and antioxidant activities compared to others. P. crustosum was reported to produce a considerably higher zone of
inhibition against pathogenic bacteria Enterococcus faecalis, Escherichia coli, Proteus vulgaris and Staphylococcus aureus with notably higher antioxidant activity than G. tenuis. The antioxidant activity index (AAI) and ferric reducing antioxidant power value were found to be 4.5 ± 0.01 and 936.68 ± 9.9 for P. crustosum and 1.02 ± 0.0 and 263.93 ± 10.9 for G. tenuis respectively. This is the first report on the antimicrobial and antioxidative properties of G. tenuis, highlighting the potential of endophytes as sources of pharmaceutically important metabolites. Bio-prospecting of fungal endophytes, thus, is an important task that may lead to new drug discovery.

References

  1. de Bary A. Morphologie und physiologie der pilze, flechten und myxomyceten. Engelmann; 1866. https://doi.org/10.5962/bhl.title.120970
  2. Wilson D. Endophyte: the evolution of a term and clarification of its use and definition. Oikos. 1995:274–76. https://doi.org/10.2307/3545919
  3. Bolívar–Anillo HJ, Izquierdo–Bueno I, González–Rey E, González–Rodríguez VE, Cantoral JM, Collado IG, et al. In–vitro analysis of the antagonistic biological and chemical interactions between the endophyte Sordaria tomento–alba and the phytopathogen Botrytis cinerea. Intl J Mol Sci. 2024;25(2):1022. https://doi.org/10.3390/ijms25021022
  4. Owen NL, Hundley N. Endophytes — the chemical synthesizers inside plants. Science Progress. 2004;87(2):79–99. https://doi.org/10.3184/003685004783238553
  5. Wen J, Okyere SK, Wang S, Wang J, Xie L, Ran Y, et al. Endophytic fungi: An effective alternative source of plant–derived bioactive compounds for pharmacological studies. J Fungi. 2022;8(2):205. https://doi.org/10.3390/jof8020205
  6. Gao H, Li G, Lou HX. Structural diversity and biological activities of novel secondary metabolites from endophytes. Molecules. 2018;23(3):646. https://doi.org/10.3390/molecules23030646
  7. Singh VK, Kumar A. Secondary metabolites from endophytic fungi: Production, methods of analysis and diverse pharmaceutical potential. Symbiosis. 2023;90(2):111–25. https://doi.org/10.1007/s13199-023-00925-9
  8. Jha P, Kaur T, Chhabra I, Panja A, Paul S, Kumar V, et al. Endophytic fungi: hidden treasure chest of antimicrobial metabolites interrelationship of endophytes and metabolites. Front in Microbiol. 2023;14:1227830. https://doi.org/10.3389/fmicb.2023.1227830
  9. Nanda S, Mohanty B, Joshi RK. Endophyte–mediated host stress tolerance as a means for crop improvement. Endo Second Meta. 2019:677–701. https://doi.org/10.1007/978–3–319–76900–4_28–1
  10. Vinale F, Nicoletti R, Lacatena F, Marra R, Sacco A, Lombardi N, et al. Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat Prod Res. 2017;31(15):1778–85. https://doi.org/10.1080/14786419.2017.1290624
  11. Singh A, Singh DK, Kharwar RN, White JF, Gond SK. Fungal endophytes as efficient sources of plant–derived bioactive compounds and their prospective applications in natural product drug discovery: insights, avenues and challenges. Microorganisms. 2021;9(1):197. https://doi.org/10.3390/microorganisms9010197
  12. Li D, Fu D, Zhang Y, Ma X, Gao L, Wang X, et al. Isolation, purification and identification
  13. of taxol and related taxanes from taxol–producing fungus Aspergillus niger subsp. taxi. J Microbio Biotech. 2017;27(8):1379–85. https://doi.org/10.4014/jmb.1701.01018
  14. Khan Z, Khan B, Shah ST, Iqbal J, Basit A, Khan MS, et al. Preserving nature’s treasure: a journey into the in vitro conservation and micropropagation of the endangered medicinal marvel Podophyllum hexandrum Royle. Horticulturae. 2024;10(8):809. https://doi.org/10.3390/horticulturae10080809
  15. World Health Organisation. Antimicrobial resistance [Internet]. 2023 [cited 2024 December 1]. Available from https://www.who.int/news–room/fact–sheets/detail/antimicrobial–resistance
  16. Tan RX, Zou WX. Endophytes: a rich source of functional metabolites. Natural Product Reports. 2001;18(4):448–59. https://doi.org/10.1039/B100918
  17. Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an
  18. endophytic fungus of Pacific yew. Science. 1993;260(5105):214–16. https://doi.org/10.1126/science.8097061
  19. Liang Z, Zhang J, Zhang X, Li J, Zhang X, Zhao C. Endophytic fungus from Sinopodophyllum emodi (Wall.) Ying that produces podophyllotoxin. J Chromatograph Sci. 2016;54(2):175–78. https://doi.org/10.1093/chromsci/bmv124
  20. Jouda JB, Tamokou JD, Mbazoa CD, Douala–Meli C, Sarkar P, Bag PK, et al. Antibacterial and cytotoxic cytochalasins from the endophytic fungus Phomopsis sp. harbored in Garcinia kola (Heckel) nut. BMC Complement Altern Med. 2016;16:1–9. https://doi.org/10.1186/s12906–016–1454–9
  21. Rahman MH, Roy B, Chowdhury GM, Hasan A, Saimun MS. Medicinal plant sources and traditional healthcare practices of forest–dependent communities in and around Chunati Wildlife Sanctuary in Southeastern Bangladesh. Environl Sustain. 2022;5(2):207–41. https://doi.org/10.1007/s42398–022–00230–z
  22. Gajurel PR, Rethy P, Kumar Y, Singh B. Piper species (Piperaceae) of North–East India. Deharadun: Bishen Singh Mahendra Pal Singh; 2008
  23. Xia MY, Yang J, Zhang PH, Li XN, Luo JF, Long CL, et al. Amides, isoquinoline alkaloids and dipeptides from the aerial parts of Piper mullesua. Natu Prod Bioprospect. 2018;8:419–30. https://doi.org/10.1007/s13659–018–0180–z
  24. Arvinder K, Sohpal VK, Zabeer A. Piper mullesua: Traditional uses and pharmacological potential. Int J Pharma Qual Assur. 2024;15(1):450–53. https://doi.org/10.25258/ijpqa.15.1.69
  25. Gond SK, Mishra A, Sharma VK, Verma SK, Kumar J, Kharwar RN, et al. Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor–tristis, a well–known medicinal plant of India. Mycoscience. 2012;53(2):113–21. https://doi.org/10.1007/S10267–011–0146–Z
  26. Petrini O. Fungal endophytes of bracken (Pteridium aquilinum), with some reflections on their use in biological control. Sydowia. 1992;44:282–93. https://api.semanticscholar.org/CorpusID:73624299
  27. Hata K, Futai K. Endophytic fungi associated with healthy pine needles and needles infested by the pine needle gall midge, Thecodiplosis japonensis. Can J Bot. 1995;73(3):384–90. https://doi.org/10.1139/b95–040
  28. Xia Y, Chen F, Du Y, Liu C, Bu G, Xin Y, et al. A modified SDS–based DNA extraction method from raw soybean. Biosci Rep. 2019;39(2):BSR20182271. https://doi.org/10.1042/BSR20182271
  29. White TJ, Bruns T, Lee SJ, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. 1990:315–22. https://doi.org/10.1016/B978–0–12–372180–8.50042–1
  30. Song X, Li Y, Hu Y, Guo W, Wu Z, Zhang Y, et al. Endophytes from blueberry roots and their antifungal activity and plant growth enhancement effects. Rhizosphere. 2021;20:100454. https://doi.org/10.1016/j.rhisph.2021.100454
  31. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021;38(7):3022–27. https://doi.org/10.1093/molbev/msab120
  32. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–96. https://doi.org/10.1093/nar/gkab301
  33. Salem SH, El–Maraghy SS, Abdel–Mallek AY, Abdel–Rahman MA, Hassanein EH, Al–Bedak OA, et al. The antimicrobial, antibiofilm and wound healing properties of ethyl acetate crude extract of an endophytic fungus Paecilomyces sp.(AUMC 15510) in earthworm model. Scientific Reports. 2022;12(1):19239. https://doi.org/10.1038/s41598–022–23831–4
  34. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American J Clin Pathol. 1966;45(4):493–96. https://doi.org/10.1093/ajcp/45.4_ts.493
  35. Kishan, Shukla RK, Shukla A, Budhlakoti P. Therapeutic potentials of characterized isolate from column chromatography by GC–MS and molecular docking of principle active of Prunus domestica L. Indian J Chem. 2024;63:692–700. https://doi.org/10.56042/ijc.v63i7.7567
  36. Scherer R, Godoy HT. Antioxidant activity index (AAI) by the 2, 2–diphenyl–1–picrylhydrazyl method. Food Chem. 2009;112(3):654–58. https://doi.org/10.1016/j.foodchem.2008.06.026
  37. Shukla RK, Shukla A, Singh R. Evaluation of nutritive value, phytochemical screening, total phenolic content and in–vitro antioxidant activity of the seed of Prunus domestica L. Plant Sci Tod. 2021;8(4):830–35. https://doi.org/10.14719/pst.2021.8.4.1231
  38. Park SU, Lim HS, Park KC, Park YH, Bae H. Fungal endophytes from three cultivars of Panax ginseng Meyer cultivated in Korea. J Ginseng Res. 2012;36(1):107–13. https://doi.org/10.5142/jgr.2012.36.1.107
  39. Shobha M, Bharathi TR, Sampath KKK, Prakash HS. Diversity and biological activities of fungal root endophytes of Hemidesmus indicus (L.) R. Br J Pharmac Phytochem. 2019;8(1):273–80.
  40. Gakuubi MM, Munusamy M, Liang ZX, Ng SB. Fungal endophytes: a promising frontier for discovery of novel bioactive compounds. J Fungi. 2021;7(10):786. https://doi.org/10.3390/jof7100786
  41. Kadhim KH, Al–Hussaini IM. Diagnostic and environmental study of Aspergillus terreus isolated from various varieties of apples fruits. J Contemp Med Sci. 2015;1(4):31–35. https://www.jocms.org/index.php/jcms/article/view/50
  42. Al Ghamdi FL, Bokhari FM, Aly MM. Toxigenic fungi associated with dried fruits and fruit–based products collected from Jeddah province. J Pharmacy Biol Sci. 2019;14:10–20. https://api.semanticscholar.org/CorpusID:198955927
  43. Jayasekara LC, Poonsawad A, Watchaputi K, Wattanachaisaereekul S, Soontorngun N. Media optimization of antimicrobial activity production and beta–glucan content of endophytic fungi Xylaria sp. BCC 1067. Biotech Rep. 2022;35:e00742. https://doi.org/10.1016/j.btre.2022.e00742
  44. Majid M, Ganai BA, Wani AH. Antifungal, antioxidant activity and gc–ms profiling of Diaporthe amygdali GWS39: a first report endophyte from Geranium wallichianum. Curr Microbio. 2025;82(40). https://doi.org/10.1007/s00284-024-04023-x
  45. Makoto TA, Yukio SA. Isolation of viridicatin form Penicillium crustosum and physiological activity of viridicatin and its 3–carboxymethylene derivative on microorganisms and plants. Bull Agric Chem Soc Japan. 1970;34(4):506–10. https://doi.org/10.1271/bbb1961.34.506
  46. Hu JT, Wang JP, Shu Y, Cai XY, Sun CT, Ding H, et al. A new cycloheptane derivative from the fungus Penicillium crustosum JT–8. Nat Prod Res. 2023;37(1):141–49. https://doi.org/10.1080/14786419.2021.1949592
  47. Yoshikawa T, You F. Oxidative stress and bio–regulation. Intl J Mol Sci. 2024;25(6):3360. https://doi.org/10.3390/ijms25063360
  48. Farouk HM, Attia EZ, Shaban GM, Abdelmohsen UR, El–Katatny MH. Antimicrobial secondary metabolites and antioxidant activities of fungal endophytes associated with Ziziphus spina–christi (L.) Desf. (Nabq) leaves. Nat Prod Res. 2024:1–5. https://doi.org/10.1080/14786419.2024.2340761
  49. Jia H, Wu L, Liu R, Li J, Liu L, Chen C, et al. Penifuranone A: a novel alkaloid from the mangrove endophytic fungus Penicillium crustosum SCNU–F0006. Intl J Mol Sci. 2024;25(9):5032. https://doi.org/10.3390/ijms25095032
  50. Kusumawati AH, Farhamzah F, Alkandahri MY, Sadino A, Agustina LS, Apriana SD. Antioxidant activity and sun protection factor of black glutinous rice (Oryza sativa var. glutinosa). Tropical J Nat Prod Res. 2021;5(11):1958–61. https://doi.org/10.26538/tjnpr/v5i11.11
  51. Wojtunik–Kulesza KA, Oniszczuk A. Ability of selected monoterpenes to reduce Fe (III) ions being pro–neurodegenerative factors: tests based on a FRAP reaction extended to 48 hours. Intl J Mol Sci. 2024;25(4):2191. https://doi.org/10.3390/ijms25042191

Downloads

Download data is not yet available.