Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Emerging trends in AI-based soil health assessment: A review

DOI
https://doi.org/10.14719/pst.6669
Submitted
12 December 2024
Published
13-07-2025
Versions

Abstract

The application of artificial intelligence (AI) in soil health assessment presents significant advancements over conventional methods by enabling more efficient and precise measurements. This review examines and supports how AI monitors soil health and its significance for sustainable land management. AI technologies, including machine learning, remote sensing and big data analytics, enable researchers and practitioners to analyse diverse data sources, model soil-plant relations and predict soil health trends with greater accuracy. AI-integrated soil health monitoring enables tracking of key soil parameters, facilitating efficient nutrient management, soil erosion control and overall ecosystem sustainability. AI-driven precision agriculture helps stakeholders predict the long-term impacts of farming practices, optimize resource use, enhance crop yields and reduce environmental impacts. This review also demonstrates how updated highlights recent research, case studies and best practices that demonstrate how AI-based soil health monitoring contributes to agricultural sustainability, conservation and food security.

References

  1. 1. Abdulraheem MI, Zhang W, Li S, Moshayedi AJ, Farooque AA, Hu J. Advancement of remote sensing for soil measurements and applications: A comprehensive review. Sustain. 2023;15(21):15444. https://doi.org/10.3390/su152115444
  2. 2. Arshad MA, Coen GM. Characterization of soil quality: physical and chemical criteria. Am J Altern Agric. 1992;7(1-2):25–31. https://doi.org/10.1017/S0889189300004410
  3. 3. Aldoseri A, Al-Khalifa KN, Hamouda AM. Re-thinking data strategy and integration for artificial intelligence: concepts, opportunities and challenges. Appl Sci. 2023;13(12):7082. https://doi.org/10.3390/app13127082
  4. 4. Arshad MA, Martin S. Identifying critical limits for soil quality indicators in agro-ecosystems. Agric Ecosyst Environ. 2002;88(2):153–60. https://doi.org/10.1016/S0167-8809(01)00252-3
  5. 5. Awais M, Naqvi SM, Zhang H, Li L, Zhang W, Awwad FA, et al. AI and machine learning for soil analysis: An assessment of sustainable agricultural practices. Bioresour Bioprocess. 2023;10(1):90. https://doi.org/10.1186/s40643-023-00710-y
  6. 6. Benos L, Tagarakis AC, Dolias G, Berruto R, Kateris D, Bochtis D. Machine learning in agriculture: A comprehensive updated review. Sensors. 2021;21(11):3758. https://doi.org/10.3390/s21113758
  7. 7. Bramley R, Janik L. Precision agriculture demands a new approach to soil and plant sampling and analysis examples from Australia. Commun Soil Sci Plant Anal. 2005;36(1-3):9–22. https://doi.org/10.1081/CSS-200042958
  8. 8. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthcare J. 2021;8(2):e188–e94. https://doi.org/10.7861/fhj.2021-0095
  9. 9. Brevik EC, Slaughter L, Singh BR, Steffan JJ, Collier D, Barnhart P, et al. Soil and human health: current status and future needs. Air Soil Water Res. 2020;13:1178622120934441. https://doi.org/10.1177/1178622120934441
  10. 10. Bunemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, De Goede R, et al. Soil quality-A critical review. Soil Biol Biochem. 2018;120:105–25. https://doi.org/10.1016/j.soilbio.2018.01.030
  11. 11. Cardoso EJ, Vasconcellos RL, Bini D, Miyauchi MY, Santos CA, Alves PR, et al. Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health?. Sci Agric. 2013;70(4):274–89. https://doi.org/10.1590/S0103-90162013000400009
  12. 12. Chaudhry H, Vasava HB, Chen S, Saurette D, Beri A, Gillespie A, et al. Evaluating the soil quality index using three methods to assess soil fertility. Sensors. 2024;24(3):864. https://doi.org/10.3390/s24030864
  13. 13. Ullo SL, Sinha GR. Advances in IoT and smart sensors for remote sensing and agriculture applications. Remote Sens. 2021;13(13):2585. https://doi.org/10.3390/rs13132585
  14. 14. Chen Q, Li L, Chong C, Wang X. AI-enhanced soil management and smart farming. Soil Use Manage. 2022;38(1):7–13. https://doi.org/10.1111/sum.12771
  15. 15. Divya R, Chinnaiyan R, editors. Reliable AI-based smart sensors for managing irrigation resources in agriculture– A review. In: Smys S, Bestak R, Chen JZ, Kotuliak I, editors. International Conference on Computer Networks and Communication Technologies. Lecture Notes on Data Engineering and Communications Technologies, vol 15. Singapore: Springer; 2018. p. 263–74. https://doi.org/10.1007/978-981-10-8681-6_25
  16. 16. Li Q, Zhao L, Wang F, Chen H, Qian X. Reduction in N2O emissions and improvement in nitrifier and denitrifier communities through bamboo-biochar-based fertilization in pomelo orchard soil. Agron. 2023;13(10):2504. https://doi.org/10.3390/agronomy13102504
  17. 17. Das BS, Wani SP, Benbi DK, Muddu S, Bhattacharyya T, Mandal B, et al. Soil health and its relationship with food security and human health to meet the sustainable development goals in India. Soil Sec. 2022;8:100071. https://doi.org/10.1016/j.soisec.2022.100071
  18. 18. Dhanaraju M, Chenniappan P, Ramalingam K, Pazhanivelan S, Kaliaperumal R. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agric. 2022;12(10):1745. https://doi.org/10.3390/agriculture12101745
  19. 19. Estrada-Herrera IR, Hidalgo-Moreno C, Guzman-Plazola R, Almaraz Suarez JJ, Navarro-Garza H, Etchevers-Barra JD. Soil quality indicators to evaluate soil fertility. Agrocienc. 2017;51(8):813–31.
  20. 20. Fess TL, Benedito VA. Organic versus conventional cropping sustainability: A comparative system analysis. Sustain. 2018;10(1):272. https://doi.org/10.3390/su10010272
  21. 21. Feng P, Wang B, Li Liu D, Yu Q. Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia. Agric Syst. 2019;173:303–16. https://doi.org/10.1016/j.agsy.2019.03.015
  22. 22. Ferrarezi RS, Peng TW. Smart system for automated irrigation using internet of things devices. HortTechnol. 2021;31(6):642–49. https://doi.org/10.21273/horttech04860-21
  23. 23. Goel V, Kumar A. Advances in soil health assessment: integrating technologies for sustainable agriculture. Plant Arch. 2024;24(2). https://doi.org/10.51470/plantarchives.2024.v24.no.2.089
  24. 24. Heung B, Ho HC, Zhang J, Knudby A, Bulmer CE, Schmidt MG. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma. 2016;265:62–77. https://doi.org/10.1016/j.geoderma.2015.11.014
  25. 25. Javaid M, Haleem A, Khan IH, Suman R. Understanding the potential applications of Artificial Intelligence in agriculture sector. Advanced Agrochem. 2023;2(1):15–30. https://doi.org/10.1016/j.aac.2022.10.001
  26. 26. Jung J, Maeda M, Chang A, Bhandari M, Ashapure A, Landivar-Bowles J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr Opin Biotechnol. 2021;70:15–22. https://doi.org/10.1016/j.copbio.2020.09.003
  27. 27. Kamilaris A, Prenafeta-Boldu FX. Deep learning in agriculture: A survey. Comput Electron Agric. 2018;147:70–90. https://doi.org/10.1016/j.compag.2018.02.016
  28. 28. Hochmuth G, Mylavarapu R, Hanlon E. Soil testing for plant-available nutrients- What is it and why do we use it?. SL408/SS621, 10/2014. EDIS. 2014;2014(8). https://doi.org/10.32473/edis-ss621-2014
  29. 29. Khan N, Ray RL, Sargani GR, Ihtisham M, Khayyam M, Ismail S. Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustain. 2021;13(9):4883. https://doi.org/10.3390/su13094883
  30. 30. Legaz BV, De Souza DM, Teixeira RF, Anton A, Putman B, Sala S. Soil quality, properties and functions in life cycle assessment: an evaluation of models. J Clean Prod. 2017;140:502–15. https://doi.org/10.1016/j.jclepro.2016.05.077
  31. 31. Li Y, Grimaldi S, Pauwels VR, Walker JP. Hydrologic model calibration using remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged and ungauged locations. J Hydrol. 2018;557:897–909. https://doi.org/10.1016/j.jhydrol.2018.01.013
  32. 32. Liu SY. Artificial intelligence (AI) in agriculture. IT Professional. 2020;22(3):14–15. https://doi.org/10.1109/MITP.2020.2986121
  33. 33. Tahat MM, Alananbeh KM, Othman YA, Leskovar DI. Soil health and sustainable agriculture. Sustain. 2020;12(12):4859. https://doi.org/10.3390/su12124859
  34. 34. Swarnkar SK, Dewangan L, Dewangan O, Prajapati TM, Rabbi F, editors. AI-enabled crop health monitoring and nutrient management in smart agriculture. In: 2023 6th International Conference on Contemporary Computing and Informatics (IC3I); Gautam Buddha Nagar, India; 2023. p. 2679‒83. https://doi.org/10.1109/IC3I59117.2023.10398035
  35. 35. Mandal AK, Yadav PK, Dhakal KH. Comparative study of evaluation of soil fertility status in rice zone, Morang. Trop Agroecosyst. 2021;2(1):12–25. https://doi.org/10.26480/taec.01.2021.12.25
  36. 36. Mandal A, Patra AK, Singh D, Swarup A, Masto RE. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour Technol. 2007;98(18):3585–92. https://doi.org/10.1016/j.biortech.2006.11.027
  37. 37. Mankotia R, Sharma R, Sepehya S, Saini R, Kumar A. Soil health assessment and its sustenance. Int J Curr Microbiol Appl Sci. 2019;8(8):1978–87. https://doi.org/10.20546/ijcmas.2019.808.231
  38. 38. Meena DK, Lamani HD, Yadav R, Saikanth R, Singh O, Yerasi S, et al. Soil science and sustainable farming: paving the way for food security. Int J Environ Clim Change. 2023;13(10):2419–24. https://doi.org/10.9734/ijecc/2023/v13i102907
  39. 39. Munoz-Rojas M. Soil quality indicators: critical tools in ecosystem restoration. Curr Opin Env Sci Health. 2018;5:47–52. https://doi.org/10.1016/j.coesh.2018.04.007
  40. 40. Nadporozhskaya M, Kovsh N, Paolesse R, Lvova L. Recent advances in chemical sensors for soil analysis: A review. Chemosensors. 2022;10(1):35. https://doi.org/10.3390/chemosensors10010035
  41. 41. Naresh R, Chandra MS, Vivek S, Charankumar G, Chaitanya J, Alam MS, et al. The prospect of artificial intelligence (AI) in precision agriculture for farming systems productivity in sub-tropical India: A review. Curr J Appl Sci Technol. 2020;39(48):96–110. https://doi.org/10.9734/cjast/2020/v39i4831205
  42. 42. Naveed M, Zahid N, Fatima I, Saleem A, Majeed M, Abid A, et al. Sustainable AI-driven applications for plant care and treatment. In: Khamparia A, Pandey B, Pandey DK, Gupta D, editors. Microbial data intelligence and computational techniques for sustainable computing. Singapore: Springer Nature; 2024. p. 235‒58. https://doi.org/10.1007/978-981-99-9621-6_16
  43. 43. Nweke I. Soil testing a Panacea to crop yield and agricultural sustainability– A case for farmers of south eastern, Nigeria. Agri Sci. 2020;2(2):7–14. https://doi.org/10.30560/as.v2n2p7
  44. 44. Nyakuri JP, Bizimana J, Bigirabagabo A, Kalisa J, Gafirita J, Munyaneza MA, et al. IoT and AI based smart soil quality assessment for data-driven Irrigation and fertilization. Am J Comput Eng. 2022;5(2):1–14. https://doi.org/10.47672/ajce.1232
  45. 45. Padarian J, Minasny B, McBratney AB. Machine learning and soil sciences: A review aided by machine learning tools. Soil. 2020;6(1):35–52. https://doi.org/10.5194/soil-6-35-2020
  46. 46. Pathan M, Patel N, Yagnik H, Shah M. Artificial cognition for applications in smart agriculture: A comprehensive review. Artif Intell Agric. 2020;4:81–95. https://doi.org/10.1016/j.aiia.2020.06.001
  47. 47. Phillips E. Conventional chemical soil testing in organic farming systems [Internet]; 2010 [cited 2025 Feb 24]. Available from: https://eorganic.org/node/3229
  48. 48. Wang J, Ding J, Yu D, Teng D, He B, Chen X, et al. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci Total Environ. 2020;707:136092. https://doi.org/10.1016/j.scitotenv.2019.136092
  49. 49. Rossel RV, McBratney A. Laboratory evaluation of a proximal sensing technique for simultaneous measurement of soil clay and water content. Geoderma. 1998;85(1):19–39. https://doi.org/10.1016/S0016-7061(98)00023-8
  50. 50. Rudd JD, Roberson GT, Classen JJ, editors. Application of satellite, unmanned aircraft system and ground-based sensor data for precision agriculture: A review. Am Society Agric Biol Engin. 2017. https://doi.org/10.13031/aim.201700272
  51. 51. Saleem MF, Raza A, Sabir RM, Safdar M, Faheem M, Al Ansari MS, et al. Applications of sensors in precision agriculture for a sustainable future. In: Alex K, editor. Agriculture and aquaculture applications of biosensors and bioelectronics. IGI Global; 2024. p. 109‒37. https://doi.org/10.4018/979-8-3693-2069-3.ch006
  52. 52. Sharma A, Georgi M, Tregubenko M, Tselykh A, Tselykh A. Enabling smart agriculture by implementing artificial intelligence and embedded sensing. Comput Ind Eng. 2022;165:107936. https://doi.org/10.1016/j.cie.2022.107936
  53. 53. Sharma R, Kumar N, Sharma BB. Applications of artificial intelligence in smart agriculture: A review. Recent Innov Comput. 2022;1:135‒42. https://doi.org/10.1007/978-981-16-8248-3_11
  54. 54. Sishodia RP, Ray RL, Singh SK. Applications of remote sensing in precision agriculture: A review. Remote Sensing. 2020;12(19):3136. https://doi.org/10.3390/rs12193136
  55. 55. Takoutsing B, Weber J, Aynekulu E, Martin JAR, Shepherd K, Sila A, et al. Assessment of soil health indicators for sustainable production of maize in smallholder farming systems in the highlands of Cameroon. Geoderma. 2016;276:64–73. https://doi.org/10.1016/j.geoderma.2016.04.027
  56. 56. Talaviya T, Shah D, Patel N, Yagnik H, Shah M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif Intell Agric. 2020;4:58–73. https://doi.org/10.1016/j.aiia.2020.04.002
  57. 57. Tarek Z, Elshewey AM, Shohieb SM, Elhady AM, El-Attar NE, Elseuofi S, et al. Soil erosion status prediction using a novel random forest model optimized by random search method. Sustain. 2023;15(9):7114. https://doi.org/10.3390/su15097114
  58. 58. Terence JS, Purushothaman G. Low-cost real-time implementation of malicious packet dropping detection in agricultural IoT platform. Tripathy AK, Sarkar M, Sahoo JP, Li KC, Chinara S, editors. In: Advances in distributed computing and machine learning. Lecture notes in networks and systems. Vol 127. Singapore: Springer; 2020. p. 87‒97. https://doi.org/10.1007/978-981-15-4218-3_9
  59. 59. Tian K, Zhao Y, Xu X, Hai N, Huang B, Deng W. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agric Ecosyst Environ. 2015;204:40–50. https://doi.org/10.1016/j.agee.2015.02.008
  60. 60. Kayad A, Paraforos DS, Marinello F, Fountas S. Latest advances in sensor applications in agriculture. Agric. 2020;10(8):362. https://doi.org/10.3390/agriculture10080362
  61. 61. Vincent DR, Deepa N, Elavarasan D, Srinivasan K, Chauhdary SH, Iwendi C. Sensors driven AI-based agriculture recommendation model for assessing land suitability. Sensors. 2019;19(17):3667. https://doi.org/10.3390/s19173667
  62. 62. Zha J. Artificial intelligence in agriculture. J Phys Conf Ser. 2020;1693:012058. https://doi.org/10.1088/1742-6596/1693/1/012058
  63. 63. Wang H, editor. The rationality evaluation of green agriculture industry structure in heilongjiang province based on artificial intelligence technology. In: 2019 12th International Conference on Intelligent Computation Technology and Automation (ICICTA); 2019. IEEE. https://doi.org/10.1109/ICICTA49267.2019.00157

Downloads

Download data is not yet available.