Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Cytogenetic diversity and phylogeny of Pancratium (Amaryllidaceae): Taxonomic insights into a medicinal bulbous geophyte

DOI
https://doi.org/10.14719/pst.6687
Submitted
13 December 2024
Published
20-05-2025
Versions

Abstract

The genus Pancratium, belonging to Amaryllidaceae, has widespread therapeutic utility mainly owing to presence of bioactive alkaloids. However, its taxonomical relationships remain inadequately explored, resulting in an ill-defined infra-generic classification. This necessitates further investigation using cytogenetic and molecular phylogenetic approaches, which can further clarify taxonomic relationships. Existing reports on such attributes are scattered across the literature, making the collation and consolidation of data a prerequisite for further analysis. The present review ascertained that cytogenetic characterization has been initiated in less than 50% of accepted Pancratium species, with no data for unplaced species. Most species exhibit a chromosome count of 2n=22 and n=11, suggesting widespread homoploidy, with dominance of asymmetric karyotype with x=11 as the most probable basic chromosome number. Nuclear genome size estimations are reported only in two species, with 2C values of 36.30 pg and 60.10 pg in P. illyricum and P. maritimum, respectively. Karyological studies have been done only in six species with mostly bimodal or graded asymmetric karyotypes and predominance of chromosomes with submedian to subterminal primary constrictions. Fluorochrome chromosome banding is reported only in P. illyricum and P. maritimum, both exhibiting CMA positive bands associated with nucleolar organizer regions identified by FISH. Thus, from the present review it is evident that the genus Pancratium exhibits widespread cytogenetic diversity with probable taxonomic utility but awaits the exploration of these traits in most species for further implications. Research on Mediterranean species using chloroplast non-coding DNA (cpDNA) sequences suggests the possible existence of a P. maritimum species complex. However, similar studies are limited in Asian species and entirely absent in Indian taxa, underscoring the need for further investigation. Correlation of such molecular phylogenetic analysis with karyological data and genome size can help in further elucidation of taxonomic relationships by establishing either distinctiveness or diversity of the established groups. However, such analysis is limited in literature and awaits further exploration.

References

  1. 1. The Angiosperm Phylogeny Group, Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV, Bot J Linn Soc. 2016;181(1):1–20. https://doi.org/10.1111/boj.12385
  2. 2. Cedrón JC, Del Arco-Aguilar M, Estévez-Braun A, Ravelo ÁG. Chemistry and biology of Pancratium alkaloids. Alkaloids Chem Biol. 2010;68:1–37. https://doi.org/10.1016/S1099-4831(10)06801-X
  3. 3. De Castro O, Brullo S, Colombo P, Jury S, De Luca P, Di Maio A. Phylogenetic and biogeographical inferences for Pancratium (Amaryllidaceae), with an emphasis on the Mediterranean species based on plastid sequence data. Bot J Linn Soc. 2012;170:12–28. https://doi.org/10.1111/j.1095-8339.2012.01268.x
  4. 4. World Flora Online. 2023. https://wfoplantlist.org/ [Accessed 10 Jan 2024]
  5. 5. Prameela R, Rao JP, Padal SB, Rao MS. A new species of Pancratium Dill. ex L. (Amaryllidaceae) from Eastern Ghats of India. J Threat Taxa. 2022;14(3):20801–04. https://doi.org/10.11609/jott.7700.14.3.20801-20804
  6. 6. Meerow AW, Snuman DA. The never-ending story: multigene approaches to the phylogeny of Amaryllidaceae. Aliso. 2006;22(1):355–66. https://doi.org/10.5642/aliso.20062201.29
  7. 7. Jin Z, Yao G. Amaryllidaceae and Sceletium alkaloids. Nat Prod Rep. 2019;36:1462–88. https://doi.org/10.1039/
  8. C8NP00055G
  9. 8. Ka S, Mérindol N, Seck I, Ricard S, Diop A, Boye CSBet al. Biological Investigation of Amaryllidaceae Alkaloid Extracts from the Bulbs of Pancratium trianthum Collected in the Senegalese Flora. Molecules. 2021;26(23):73–82. https://doi.org/10.3390/molecules26237382
  10. 9. Otari SS, Ghane SG. Bioactive Compounds and Biological Activities of the Genus Pancratium. In: Murthy HN, Paek KY, Park, SY, editors. Bioactive Compounds in the Storage Organs of Plants. Reference Series in Phytochemistry. Springer, Cham; 2023. pp. 1–18. https://doi.org/10.1007/978-3-031-29006-0_10-1
  11. 10. Nath S, Saha PS, Jha S. Medicinal bulbous plants: biology, phytochemistry and biotechnology. In: RamawatKG, MérillonJM, editors. Bulbous plants biotechnology, CRC Press Inc, Boca Raton, Florida; 2014. p. 338–69. https:// www.taylorfrancis.com/chapters/edit/10.1201/b16136-19/medicinal-bulbous-plants-biology-phytochemistry-biotechnology-sayantani-nath-partha-sarathi-saha-sumita-jha
  12. 11. Rokbeni N, M’rabet Y, Cluzet S, Richard T, Krisa S, Boussaid M, et al. Determination of phenolic composition and antioxidant activities of Pancratium maritimum L. from Tunisia. Ind Crops Prod. 2016;94:505–13. https://doi.org/10.1016/j.indcrop.2016.09.021
  13. 12. Soltan MM, Hamed AR, Hetta MH, Hussein AA. Egyptian Pancratium maritimum L. flowers as a source of anti-Alzheimer’s agents. Bull Fac Pharm Cairo Univ. 2015;53:19–22. https://doi.org/10.1016/j.bfopcu.2015.02.002
  14. 13. Youssef DT, Shaala LA, Altyar AE. Cytotoxic Phenylpropanoid Derivatives and Alkaloids from the Flowers of Pancratium maritimum L. Plants. 2022:11(4):476. https://doi.org/10.3390/plants11040476
  15. 14. Bonvicini F, Antognoni F, Iannello C, Maxia A, Poli F, Gentilomi GA. Relevant and selective activity of Pancratium illyricum L. against Candida albicans clinical isolates: a combined effect on yeast growth and virulence. BMC Complement Altern Med. 2014;14(1):1–8. https://doi.org/10.1186/1472-6882-14-409
  16. 15. Morsi SMM, Salem NAE, El-Sayed Hashem M, Yaecoub HS. Phytochemical studies on Pancratium arabicum
  17. (Sickenb). EJARC. 2000;51(3):293–308. https://doi.org/10.21608/ejarc.2000.227081
  18. 16. Iannello C, Pigni NB, Antognoni F, Poli F, Maxia A, De Andrade JP, et al. A potent acetylcholinesterase inhibitor from Pancratium illyricum L. Fitoterapia. 2014;92:163–67. https://doi.org/10.1016/j.fitote.2013.11.005
  19. 17. Murray AP, Faraoni MB, Castro MJ, Alza NP, Cavallaro V. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr Neuropharmacol. 2013;11(4):388–413. https://doi.org/10.2174/1570159X11
  20. 311040004
  21. 18. Patil DN, Yadav SR, Patil S, Bapat VA, Jadhav JP. Multidimensional Studies of Pancratium parvum Dalzell against Acetylcholinesterase: A Potential Enzyme for Alzheimer's Management. J Am Coll Nutr. 2020;39:601–18. https://doi.org/10.1080/07315724.2019.1709914
  22. 19. Sadasivaiah B, Karuppusamy S. Two new species of Pancratium Amaryllidaceae from India. Species. 2018;19:132–39. https://discoveryjournals.org/Species/current_issue/2018/A18.pdf
  23. 20. Shaikh M, Tiwari AP, Shukla AN, Sikarwar RLS. A New Locality of Recently Described New Species Pancratium telanganense (Amaryllidaceae) from Central India. Nelumbo. 2021;63(2):83–85. https://doi.org/10.20324/
  24. nelumbo/v63/2021/166766
  25. 21. Jha S, Raina SN, Ohri D, Verma RC, Dhar MK, Lekhak MM, et al. A new online database on genome-related information of Indian plants. Plant Syst Evol. 2019;305:837–43. https://doi.org/10.1007/s00606-019-01602-5
  26. 22. Nath S, Jha TB, Mallick SK, Jha S. Karyological relationships in Indian species of Drimia based on fluorescent chromosome banding and nuclear DNA amount. Protoplasma. 2015;252(1):283–99. https://doi.org/10.1007/s00709-014-0679-z
  27. 23. Nath S, Sarkar S, Patil SD, Saha PS, Lekhak MM, Ray S, et al. Cytogenetic diversity in Scilloideae (Asparagaceae): a comprehensive recollection and exploration of karyo-evolutionary trends. Bot Rev. 2023;89(2):158–200. https://doi.org/10.1007/s12229-022-09279-1
  28. 24. Pfosser M, Speta F. Phylogenetics of Hyacinthaceae based on plastid DNA sequences. Ann Missouri Bot Gard. 1999;84(4):852–75. https://doi.org/10.2307/2666172
  29. 25. Saha PS, Jha S. A molecular phylogeny of the genus Drimia (Asparagaceae: Scilloideae: Urgineeae) in India inferred from non-coding chloroplast and nuclear ribosomal DNA sequences. Sci Rep. 2019;9(1):7563. https://doi.org/10.1038/s41598-019-43968-z
  30. 26. Saha PS, Ray S, Sengupta M, Jha S. Molecular phylogenetic studies based on rDNA ITS, cpDNA trnL intron sequence and cladode characteristics in nine Protasparagus taxa. Protoplasma. 2015;252(4):1121–34. https://doi.org/10.1007/s00709-014-0746-5
  31. 27. Saha PS, Sengupta M, Jha S. Ribosomal DNA ITS1, 5.8S and ITS2 secondary structure, nuclear DNA content and phytochemical analyses reveal distinctive characteristics of four subclades of Protasparagus. J Syst Evol. 2017;55(1):
  32. 54–70. https://doi.org/10.1111/jse.12221
  33. 28. Alvarez I, Wendel JF. Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenetics Evol. 2003;29:417–34. https://doi.org/10.1016/S1055-7903(03)00208-2
  34. 29. Jha TB, Saha PS. Evaluation of morphological traits, fluorescent banding and rDNA ITS sequences in cultivated and wild Indian lentils (Lens spp.). Genet Resour Crop Evol. 2022;69(1):349–62. https://doi.org/10.1007/s10722-021-01234-0
  35. 30. Shaw J, Lickey EB, Schilling EE, Small RL. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot. 2007;94(3):275–88. https://doi.org/10.3732/ajb.94.3.275
  36. 31. Zhang W, Tian W, Gao Z, Wang G, Zhao H. Phylogenetic Utility of rRNA ITS2 Sequence-Structure under Functional Constraint. Int J Mol Sci. 2020;21:6395. https://doi.org/10.3390/ijms21176395
  37. 32. Meerow AW, Guy CL, Li QB, Yang SL. Phylogeny of the American Amaryllidaceae based on nrDNA ITS sequences. Syst Bot. 2000;25(4):708–26. https://doi.org/10.2307/2666729
  38. 33. El-Hadidy A, Abd MEG, Amer W, Hassan R.?Morphological and Molecular Differentiation between Egyptian Species of Pancratium L. (Amaryllidaceae) Acta Biol Crac Ser Bot Warsaw. 2012;54(1):53–64. https://doi.org/
  39. 10.2478/v10182-012-0005-z
  40. 34. Al-Qurainy F, Khan S, Nadeem M, Tarroum M, Alaklabi A. Assessment of phylogenetic relationship of rare plant species collected from Saudi Arabia using internal transcribed spacer sequences of nuclear ribosomal DNA. Genet Mol Res. 2013;12(1):723–30. https://doi.org/10.4238/2013.March.11.21
  41. 35. Borgen L. Chromosome numbers of vascular plants from the Canary Islands, with special reference to the occurrence of polyploidy. Nytt Mag Bot. 1969;16:81–121. https://catalogo.museosdetenerife.org/digital/collection/
  42. arca/id/5780/
  43. 36. Zemskova EA, Sveshnikova LI. Karyological study of some representatives of the family Amaryllidaceae. Botanicheski? Zhurnal. 1999;84(4):86–98. https://www.cabidigitallibrary.org/doi/full/10.5555/20001607225
  44. 37. Lakshmi N, J Venkateswarlu. Karyological studies in Pancratium longiflorum L. Curr Sci. 1976;45:840–41. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7710380926
  45. 38. Garbari F, Crisman E. Cytotaxonomical contributions to the Jordanian Flora. 1. Webbia. 1988;42(1):21–41. https://doi.org/10.1080/00837792.1988.10670425
  46. 39. Morton JK. The experimental taxonomy of the West African species of Pancratium L. (Amaryllidaceae). Kew Bull. 1965;19(2):337–47. https://doi.org/10.2307/4108085
  47. 40. Ponnamma MG. Studies on bulbous ornamentals I. Karyomorphology of diploid and triploid taxa of Pancratium triflorum Roxb. Cytologia. 1978;43(3-4):717–25. https://doi.org/10.1508/cytologia.43.717
  48. 41. Reese G. Über die Polyploidiespektren in der nordsaharischen Wüstenflora. Flora oder Allgemeine Botanische Zeitung. 1957;144(4):598–634. https://doi.org/10.1016/S0367-1615(17)31413-1
  49. 42. Venkata KR. Variation in the somatic chromosomes of Pancratium triflorum Roxb. Curr Sci. 1975;44:716. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7637004971
  50. 43. Zaman MA, Nessa L. Meiotic behaviour in 2n=44 and karyotype analysis in 2n=55 chromosome Pancratium verecundum L. (Amaryllidaceae). Caryologia. 1974;27:395–402. https://www.cabidigitallibrary.org/doi/full/
  51. 10.5555/19750330833
  52. 44. Vijayavalli B, Mathew PM. Cytological studies in the south Indian Eucharideae. New Bot. 1990;17:175–81.
  53. 45. Șenel G, Özkan M, Kandemir N. A karyological investigation on some rare and endangered species of Amaryllidaceae in Turkey. Pak J Bot. 2002;34(3):229–35. https://www.cabidigitallibrary.org/doi/full/10.5555/
  54. 20023181646
  55. 46. Roti-Michelozzi G, Serrato G. Numeri cromosomici per la flora italiana. Inf Bot Ital. 1980;12(2):752–59. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL82X0326282
  56. 47. Lakshmi N. Cytotaxonomical studies in eight genera of Amaryllidaceae. Cytologia. 1980;45(4):663–73. https://doi. org/10.1508/cytologia.45.663
  57. 48. Fernandes A. Sur le nomble et la forme des chromosomes chez Amaryllis belladonna L. Pancratium maritimum L. et Ruscus acuteatus L. Compt Rend Soc Biol (Paris). 1930;105:138–39.
  58. 49. Heitz E. Der Nachweis der Chromosomen. Vergleichende Studien uber ihre Zahl, Grosse und Form im Pflanzenreich. I. Zeitschr Bot. German. 1926;18:625–81. https://cir.nii.ac.jp/crid/1573387450516793472
  59. 50. Inariyama S. Karyotype studies in Amaryllidaceae. Sc. Rep. Tokyo. Bunrika Daigaku Series B. 1937;52:95–113. https://www.cabidigitallibrary.org/doi/full/10.5555/19381601250
  60. 51. Satô D. Karyotype Alteration and Phylogeny. IV Karyotypes in Amaryllidaceae with special reference to the SAT-chromosome. Cytologia. 1938;9(2-3):203–42. https://doi.org/10.1508/cytologia.9.203
  61. 52. Aldridge AE. Estudiosen la flora de Macaronesia: algunos numeros de cromosomas II. Bot Macaronésica. 1976;2:9–18. https://dialnet.unirioja.es/servlet/articulo?codigo=2594769
  62. 53. Zonneveld BJM, Leitch IJ, Bennett MD. First, nuclear DNA amounts in more than 300 angiosperms. Ann Bot. 2005;96:229–44. https://doi.org/10.1093/aob/mci170
  63. 54. Bou Dagher-Kharrat M, Abdel-Samad N, Douaihy B, Bourge M, Fridlender A, Siljak-Yakovlev S, et al. Nuclear DNA C-values for biodiversity screening: Case of the Lebanese flora. Plant Biosyst. 2013;147:1228–37. https://doi.org/10.1080/11263504.2013.861530
  64. 55. Sharma AK. Further investigation on the cytology of the family Amaryllidaceae and its bearing on the interpretation of its phylogeny. Genetica. 1954;6:71–100. https://cir.nii.ac.jp/crid/1574231874876947712
  65. 56. Sharma AK, Bal AK. A cytological study of a few genera of Amaryllidaceae with a view to find out the basis of their phylogeny. Cytologia.1956;21(4):329–52. https://doi.org/10.1508/cytologia.21.329
  66. 57. Sharma AK, Bhattacharyya NK. An investigation on the scope of a number of pre-treatment chemicals for chromosome studies in different groups of plants. Jap J Bot. 1960;17:152–62. https://www.cabidigitallibrary.org/
  67. doi/full/10.5555/19611601307
  68. 58. Oyewole SO. Karyotype variation in Pancratium hirtum A. Chev. (Amaryllidaceae). Ann Missouri Bot Gard. 1988;75:218–25. https://doi.org/10.2307/2399475
  69. 59. D'amato GF, Dominicis RD. Heterochromatin pattern, nucleolar organizer regions and rDNA in Pancratium illyricum and P. maritimum (Amaryllidaceae). Cytobios. 1996;85:185–94. https://www.cabidigitallibrary.org/doi/
  70. full/10.5555/19961609947
  71. 60.Bhattacharya SS, Khalifa MM, Chaudhari II. In IOPB, the chromosome number reports XXXII. Taxon. 1971;20:349–56. https://doi.org/10.1002/j.1996-8175.1971.tb03155.x
  72. 61. Kozuharov S, Popova M, Kuzmanov B. Cytotaxonomic studies on Bulgarian flowering plants. Genet Plant Breed. 1968;1:251–55.
  73. 62. Martinoli G. Cariologia Comparata del Pancratium maritimum L. e del Pancratium illyricum L., in Rapporto Alla Validita’ del Genere Halmyra: (con 6 figure nel testo). Caryologia. Italian. 1949;1(2):122–30. https://doi.org/10.1080/ 00087114.1949.10797502

Downloads

Download data is not yet available.