Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Mushroom-mediated silver nanoparticle synthesis: characterisation, antimicrobial and antioxidant activities

DOI
https://doi.org/10.14719/pst.6744
Submitted
17 December 2024
Published
17-02-2025
Versions

Abstract

The use of biological agents for the synthesis of green nanoparticles has garnered significant attention, emerging as a promising approach in nanotechnology and materials science. In this study, silver nanoparticles were synthesised using an aqueous extract from cultivated mushrooms, including Chlorophyllum agaricoides PP410314, Coriolopsis trogii PP921338.1, Ganoderma sp. PP921328.1 and Lentinus tigrinus PP921339.1, grown on potato dextrose agar (PDA). The formation of these nanoparticles was confirmed through UV-visible spectroscopy, with maximum absorbance observed at 424 and 426 nm. Nanoparticles were characterised to assess their stability, shape, size and crystallinity using various analytical techniques, such as Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The XRD pattern revealed 2? values corresponding to silver nanocrystals, with average crystallite sizes of 25.31, 27.05, 28.98 and 31.42 nm. The antimicrobial activity of the synthesised nanoparticles was tested against various microorganisms, including Escherichia coli ATCC25922, Pseudomonas aeruginosa ATCC9027, Staphylococcus aureus ATCC6538 and Candida albicans ATCC10231, demonstrating a strong inhibitory effect. Furthermore, antioxidant assays confirmed that these nanoparticles exhibited significant activity, which increased with concentration, in comparison to vitamin C. Overall, the green synthesis approach successfully produces silver nanoparticles with robust antioxidant and antibacterial properties, which can be attributed to the bioactive molecules present on their surface.

References

  1. Indumathi M, Ishwarya J. In vitro evaluation of antimicrobial activity of silver nanoparticle from edible mushroom. Int J Adv Res Biol Sci. 2022;9(5):164–70. http://dx.doi.org/10.22192/ijarbs.2022.09.05.018
  2. Mirunalini S, Arulmozhi V, Deepalakshmi K, Krishnaveni M. Intracellular biosynthesis and antibacterial activity of silver nanoparticles using edible mushrooms. Not Sci Biol. 2012;(4):55–61. www.notulaebiologicae.ro
  3. Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA. Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip. 2015;29(2): 221–36. http://doi.org/10.1080/13102818.2015.1008194
  4. Priyadarshni KC, Mahalingam PU. Antimicrobial and anticancer activity of silver nanoparticles from edible mushroom: a review. Asian J Pharm Clin Res, Innovare Academics Sciences. 2017;10(3) 37–40. http://doi.org/10.22159/ajpcr.2017.v10i3.16027
  5. Gezaf SA, Hamedo HA, Ibrahim AA, Mossa MI. Mycosynthesis of silver nanoparticles by endophytic Fungi: Mechanism, characterization techniques and their applications. Microb Biosyst J. 2023; 7(2): 48–65. http://doi.org/10.21608/mb.2023.185718.1066
  6. Vijayakumar G, Kim HJ, Jo JW, Rangarajulu SK. Macrofungal mediated biosynthesis of silver nanoparticles and evaluation of its antibacterial and wound-healing efficacy. Int J Mol Sci. 2024; 25(2):861. https://doi.org/10.3390/ijms25020861
  7. Nirmala S, Siva R. Green synthesis of silver nanoparticles from macrocybe gigantea and its effect against food borne pathogens. Indian Journal of Science and Technology. Indian J Sci Technol. 2023;16(9):605–13. https://doi.org/10.17485/IJST/v16i9.2288
  8. Vanaja M, Annadurai G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Applied Nanoscience (Switzerland). 2013;3:217–23. https://doi.org/10.1007/s13204-012-0121-9
  9. Owaid MN, Naeem GA, Muslim RF, Oleiwi RS. Synthesis, characterization and antitumor efficacy of silver nanoparticle from Agaricus bisporus Pileus, Basidiomycota. Walailak J Sci & Tech 2020;17(2):75–87. https://doi.org/10.48048/wjst.2020.5840
  10. Guilger-Casagrande M, Lima R de. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. 2019;7:287. https://doi.org/10.3389/fbioe.2019.00287
  11. Gudikandula K, Maringanti SC. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J Exp Nanosci.2016, 11(9): 714-21. http://doi.org/10.1016/j.onano.2017.07.002
  12. Fogarasi M, Neme? SA, F?rca? A, Socaciu C, Semeniuc CA, Socaciu MI, et al. Bioactive secondary metabolites in mushrooms: A focus on polyphenols, their health benefits and applications. Food Bioscience. Elsevier Ltd; 2024; 62,105166. https://doi.org/10.1016/j.fbio.2024.105166
  13. Kumlay AM, Koçak MZ, Koyuncu M, Güller U. Bioanalysis of total phenolic contents, volatile compounds, and radical scavenging activities of three wild edible mushrooms. STUDIA UBB CHEMIA, LXVI. 2021;66(4):133–48. https://doi.org/10.24193/subbchem.2021.4.10
  14. Mellere L, Bellasio M, Berini F, Marinelli F, Armengaud J, Beltrametti F. Coriolopsis trogii MUT3379: A novel cell factory for high-yield laccase production. Fermentation. 2024;10(7):376. https://doi.org/10.3390/fermentation10070376.
  15. Dulay RMR, Miranda LA, Malasaga JS, Kalaw SP, Reyes RG, Hou CT. Antioxidant and antibacterial activities of acetonitrile and hexane extracts of Lentinus tigrinus and Pleurotus djamour. Biocatal Agric Biotechnol. 2017; 9:141–44. https://doi.org/10.1016/j.bcab.2016.12.003
  16. Martínez-Montemayor MM, Ling T, Suárez-Arroyo IJ, Ortiz-Soto G, Santiago-Negrón CL, Lacourt-Ventura MY, et al. Identification of biologically active Ganoderma lucidum compounds and synthesis of improved derivatives that confer anti-cancer activities in vitro. Front Pharmacol 2019;10:115. https://doi.org/10.3389/fphar.2019.00115
  17. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. In: PCR Protocols. Elsevier; 1990. p. 315–22. http://doi.org/10.1016/B978-0-12-372180-8.50042-1
  18. Sulaiman SQ, al Anbagi RA, Alshuwaili FRH, Abdalrahman AS. New records of three Basidiomycetous species from Iraq using phenotypic and phylogenetic analyses. Plant sci today. 2024;11(4):1047–54. https://doi.org/10.14719/pst.4416
  19. Prasad R, Varshney VK, Harsh NSK, Kumar M. Antioxidant capacity and total phenolics content of the fruiting bodies and submerged cultured mycelia of sixteen higher basidiomycetes mushrooms from India. Int J Med Mushrooms. 2015;17(10):933–41. https://doi.org/10.1615/IntJMedMushrooms.v17.i10.30
  20. Subedi K, Basnet BB, Panday R, Neupane M, Tripathi GR. Optimization of growth conditions and biological activities of Nepalese Ganoderma lucidum strain Philippine. Adv Pharmacol Pharm Sci 2021; 2021(12):1-7 https://doi.org/10.1155/2021/4888979
  21. Yassin MA, Elgorban AM, El-Samawaty AERMA, Almunqedhi BMA. Biosynthesis of silver nanoparticles using Penicillium verrucosum and analysis of their antifungal activity. Saudi J Biol Sci 2021; 28(4):2123–127. https://doi.org/10.1016/j.sjbs.2021.01.063
  22. Wang D, Xue B, Wang L, Zhang Y, Liu L, Zhou Y. Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Scientific Reports. 2021; 11(1). https://doi.org/10.1038/s41598-021-89854-5
  23. Ahmad K, Asif HM, Afzal T, Khan MA, Younus M, Khurshid U, et al. Green synthesis and characterization of silver nanoparticles through the Piper cubeba ethanolic extract and their enzyme inhibitory activities. Front Chem. 2023;11:1065986. https://doi.org/10.3389/fchem.2023.1065986
  24. Jaast S, Grewal A. Green synthesis of silver nanoparticles, characterization and evaluation of their photocatalytic dye degradation activity. Curr Res Green Sustain Chem. 2021;4:100195. https://doi.org/10.1016/j.crgsc.2021.100195
  25. Mohammed Ali IM, Ahmed AB, Al-Ahmed HI. Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin. Scientific Reports. 2023;13(1). https://doi.org/10.1038/s41598-023-29412-3
  26. Chand K, Abro MI, Aftab U, Shah AH, Lakhan MN, Cao D, et al. Green synthesis characterization and antimicrobial activity against: Staphylococcus aureus of silver nanoparticles using extracts of neem, onion and tomato. RSC Advances. 2019;9(30):17002–015. https://doi.org/10.1039/c9ra01407a
  27. Aspoukeh PK, Barzinjy AA, Hamad SM. A novel approach to the green synthesis of zinc oxide nanorods using Thymus kotschyanus plant extract: effect of ammonium hydroxide and precursor concentration. Nano Ex. 2023; 4(4). https://doi.org/10.1088/2632-959X/acfe25
  28. Al-Hayanni HSA, Alnuaimi MT, Al-Lami RAH, Zaboon SM. Antibacterial effect of silver nanoparticles prepared from Sophora flavescens root aqueous extracts against multidrug-resistance Pseudomonas aeruginosa and Staphylococcus aureus. Journal of Pure and Applied Microbiology. JPAM. 2022; 16(4):2880–890. https://doi.org/10.22207/JPAM.16.4.61
  29. Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J-AIM. 2020; 11(1):37–44. https://doi.org/10.1016/j.jaim.2017.11.003
  30. Sharma A, Sagar A, Rana J, Rani R. Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. Micro nano syst. lett. 2022; 10(1). https://doi.org/10.1186/s40486-022-00144-9
  31. Giusti A, Ricci E, Tinacci L, Verdigi F, Narducci R, Gasperetti L, et al. Molecular authentication of mushroom products: First survey on the Italian market. Food Control. 2023; 150(4):109778. https://doi.org/10.1016/j.foodcont.2023.109778
  32. Rajurkar A, Gogri D, Jamdade N, Pathak A. Green synthesis of silver nanoparticles: their characterization, antimicrobial, antioxidant activity and nanogel formulation. Nano Biomed. Eng. 2023; 15(1):42–50. http://doi.org/10.26599/NBE.2023.9290006
  33. Sreenivasagan S, Subramaniann A, Rajeshkumar S. Uv-Vis spectroscopy of silver nanoparticles and toxicology evaluation of silver nanoparticle based oral rinse on embryonic development of Zebrafish. J Complement Med Res. 2021; 12(2):85-90. http://doi.org/10.5455/jcmr.2021.12.02.12
  34. Pacheco-Coello F. Synthesis and size estimation of silver nanoparticles, by reduction with aqueous extracts of calyces leaves and seeds of Hibiscus sabdariffa linn: Promotion of green synthesis. Rev Bol Quim. 2021;38(3):113-18. http://www.bolivianchemistryjournal.org/
  35. Mustapha T, Ithnin NR, Othman H, Abu Hasan ZI, Misni N. Bio-fabrication of silver nanoparticles using Citrus aurantifolia fruit peel extract (CAFPE) and the role of plant extract in the synthesis. Plants. 2023; 12(8). https://doi.org/10.3390/plants12081648
  36. El-Mehdawy AA, Koriem M, Amin RM, Shehata AZI, El-Naggar HA. Green synthesis of silver nanoparticles using chitosan extracted from Penaeus indicus and its potential activity as aquatic larvicidal agent of Culex pipens. Egypt J Aquat Biol Fish. 2022; 26(1):425-42. https://doi.org/10.21608/EJABF.2022.219887.
  37. Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green synthesis, characterization and application of silver nanoparticles using bioflocculant: a review. Bioengineering. 2024; 11(5):492. https://doi.org/10.3390/bioengineering11050492
  38. Alabi IY, Adenipekun CO, Ipeaiyeda RA, Adekanmbi AO, Adebayo-Tayo AB. Antibacterial activities of biosynthesized silver-nanoparticles from three species of mushroom. Afr J Biomed Res. 2024;27(1):161–68. https://doi.org/10.4314/ajbr.v27i1.X
  39. Qamer S, Che-Hamzah F, Misni N, Joseph NMS, Al-Haj NA, Amin-Nordin S. Deploying a novel approach to prepare silver nanoparticle Bellamya bengalensis extract conjugate coating on orthopedic implant biomaterial discs to prevent potential biofilm formation. Antibiotics. 2023; 12(9). https://doi.org/10.3390/antibiotics12091403
  40. Nahar K, Hafezur Rahaman M, Arifuzzaman Khan GM, Khairul Islam Md, Al-Reza SM. Green synthesis of silver nanoparticles from Citrus sinensis peel extract and its antibacterial potential. AJGC. 2021; 5(1):135–50. https://doi.org/10.22034/ajgc.2021.113966
  41. Sweedan EG, Abdul Majeed SM. Effects of silver nanoparticles synthesized from phenolic extract of Agaricus bisporus against pathogenic bacteria and yeasts. Nano Biomed Eng. 2023;15(1):86–95. https://doi.org/10.26599/NBE.2023.9290010
  42. Robinson M, Filice CT, McRae DM, Leonenko Z. Atomic force microscopy and other scanning probe microscopy methods to study nanoscale domains in model lipid membranes. Adv Phys X. 2023;8(1):2197623. https://doi.org/10.1080/23746149.2023.2197623
  43. Nasiri S, Rabiei M, Palevicius A, Janusas G, Vilkauskas A, Nutalapati V, et al. Modified Scherrer equation to calculate crystal size by XRD with high accuracy, examples Fe2O3, TiO2 and V2O5. Nano Trends. 2023; 3,100015, p. 1-12. https://doi.org/10.1016/j.nwnano.2023.100015
  44. Kuru M, Kuru T?, Karaca E, Ba?c? S. Dielectric, magnetic and humidity properties of Mg–Zn–Cr ferrites. J Alloys Compd. 2020;836, 155318. https://doi.org/10.1016/j.jallcom.2020.155318
  45. Abbas R, Luo J, Qi X, Naz A, Khan IA, Liu H, et al. Silver nanoparticles: synthesis, structure, properties and applications. Nanomaterials. 2024;14(17):1425. https://doi.org/10.3390/nano14171425
  46. Irwan R, Teheni MT, Syafriah W. Synthesis and characterization of silver nanoparticles from the leaf stalk extract of Moringa oleifera. Indo J Chem Res. 2023;11(1):37–42. https://doi.org/10.30598//ijcr. 2023.11-irw
  47. Almatroudi A. Silver nanoparticles: Synthesis, characterisation and biomedical applications. Open Life Sci. 2020; 15(1):819–39. https://doi.org/10.1515/biol-2020-0094
  48. Okumus E. Green synthesis of silver nanoparticles using Hebeloma excedens mushroom extract as a new source: Anti-lipid peroxidation, bioaccessibility and antidiabetic properties. J Food Meas Charact. 2024;18(6):5157–169. https://doi.org/10.1007/s11694-024-02635-2
  49. Alzubaidi AK, Al-Kaabi WJ, Ali A al, Albukhaty S, Al-Karagoly H, Sulaiman GM, et al. Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities. Appl Sci. 2023;13(4). https://doi.org/10.3390/app13042182
  50. Ohiduzzaman, Khan MNI, Khan KA, Bithi P. Biosynthesis of silver nanoparticles by banana pulp extract: Characterizations, antibacterial activity, and bioelectricity generation. Heliyon. 2024; 10(3):e25520. https://doi.org/10.1016/j.heliyon.2024.e25520.
  51. Ipe DS, Kumar PTS, Love RM, Hamlet SM. Silver nanoparticles at biocompatible dosage synergistically increases bacterial susceptibility to antibiotics. Front Microbiol. 2020;11:1074. https://doi.org/10.3389/fmicb.2020.01074
  52. González-Fernández S, Lozano-Iturbe V, García B, Andrés LJ, Menéndez MF, Rodríguez D, et al. Antibacterial effect of silver nanorings. BMC Microbiology. 2020;20(1):172. https://doi.org/10.1186/s12866-020-01854-z
  53. Holubnycha V, Husak Y, Korniienko V, Bolshanina S, Tveresovska O, Myronov P, Holubnycha M, et al. Antimicrobial activity of two different types of silver nanoparticles against wide range of pathogenic bacteria. Nanomaterials. 2024;14(2):137. https://doi.org/10.3390/nano14020137
  54. More PR, Pandit S, Filippis A de, Franci G, Mijakovic I, Galdiero M. Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms. 2023;11(2):369. https://doi.org/10.3390/microorganisms11020369
  55. Pazos-Ortiz E, Roque-Ruiz JH, Hinojos-Márquez EA, López-Esparza J, Donohué-Cornejo A, Cuevas-González JC, et al. Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria. J Nanomater. 2017;2017(6):1-9. https://doi.org/10.1155/2017/4752314
  56. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831. https://doi.org/10.3389/fmicb.2016.01831
  57. Salari S, Bahabadi E, Samzadeh-Kermani A, Yosefzaei F. In-vitro evaluation of antioxidant and antibacterial potential of green synthesized silver nanoparticles using Prosopis farcta fruit extract. Iran J Pharm Res. 2019;18(1):430-45. https://doi.org/10.22037/ijpr.2019.2330
  58. Ansar S, Tabassum H, Aladwan NSM, Naiman Ali M, Almaarik B, AlMahrouqi S, et al. Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Scientific Reports. 2020;10(1). https://doi.org/10.1038/s41598-020-74371-8

Downloads

Download data is not yet available.