Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Comparative embryonic toxicology evaluation of Ocimum tenuiflorum and Ocimum gratissimum herbal formulation based oral rinse and commercial oral rinse

DOI
https://doi.org/10.14719/pst.6814
Submitted
20 December 2024
Published
11-06-2025 — Updated on 01-07-2025
Versions

Abstract

Herbal-based oral care products are gaining attention as safer alternatives to commercial oral rinses. This study evaluates the embryotoxic effects of a herbal-based oral rinse compared to a commercial oral rinse using zebrafish embryos. The objective was to assess differences in hatching and viability rates and the safety profiles of these products. Zebrafish (Danio rerio) embryos were exposed to varying concentrations (5, 10, 20, 40 and 80 μg/mL) of both oral rinses and were monitored over 96 hr for hatching rates and viability, evaluated using standard microscopy at 24 hr intervals. The herbal oral rinse showed a gradual decline in hatching and viability rates with increasing concentrations. At 40 μg/mL, the hatching rate was 80 %, which decreased to 60 % at 80 μg/mL. The commercial oral rinse showed a hatching rate dropping to 60 % at 40 μg/mL and 40 % at 80 μg/mL. Viability rates followed a similar trend, with the herbal rinse maintaining 80 % viability at higher concentrations, while the commercial rinse reduced viability to 60 % at the same concentrations. The results indicate that the herbal oral rinse has a lower embryotoxic profile compared to the commercial oral rinse. The higher hatching and viability rates seen with the herbal formulation suggest it may be a safer option for oral applications. The Ocimum tenuiflorum and Ocimum gratissimum herbal oral rinse exhibited lower toxicity to zebrafish embryos compared to the commercial oral rinse, making it a safer alternative for oral care.

References

  1. 1. Brookes ZLS, McCullough M, Kumar P, McGrath C. Mouthwashes: Implications for practice. Int Dent J. 2023 Nov;73(Suppl 2): S98-101. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690539/
  2. https://doi.org/10.1016/j.identj.2023.08.013
  3. 2. Varghese RM, S AK, Shanmugam R. Antimicrobial activity of silver nanoparticles synthesized using Ocimum tenuiflorum and Ocimum gratissimum herbal formulations. Cureus. 2024 Feb;16(2):e54994. https://doi.org/10.77
  4. 59/cureus.54994
  5. 3. Rajendiran M, Trivedi HM, Chen D, Gajendrareddy P, Chen L. Recent development of active ingredients in mouthwashes and toothpastes for periodontal diseases. Molecules. 2021 Apr 1;26(7):2001. https://doi.org/10.33
  6. 90/molecules26072001
  7. 4. Ciavoi G, Dobjanschi L, Jurca T, Osser G, Scrobota I, Pallag A, et al. Comparative effectiveness of a commercial mouthwash and an herbal infusion in oral health care. Appl Sci (Basel). 2021 Mar 27;11(7):3008. https://www.mdpi.com/2076-3417/11/7/3008
  8. 5. Deus PF, Ouanounou A. Chlorhexidine in dentistry: Pharmacology, uses and adverse effects. Int Dent J. 2022 Jun;72(3):269–77. https://doi.org/10.1016/j.identj.2022.01.005
  9. 6. Alrashdan MS, Leao JC, Doble A, McCullough M, Porter S. The effects of antimicrobial mouthwashes on systemic disease: What is the evidence? Int Dent J. 2023 Nov;73:S82–88. https://doi.org/10.1016/j.identj.2023.08.012
  10. 7. Tartaglia GM, Tadakamadla SK, Connelly ST, Sforza C, Martín C. Adverse events associated with home use of mouthrinses: a systematic review. Ther Adv Drug Saf. 2019 Jan [cited 2024 Apr 29];10:204209861985488. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759706/
  11. 8. Bescos R, Ashworth A, Cutler C, Brookes ZL, Belfield L, Rodiles A, et al. Effects of chlorhexidine mouthwash on the oral microbiome. Sci Rep. 2020 Mar 24 [cited 2024 Oct 30];10(1):5254. https://www.nature.com/articles/s41598-020-61912-4
  12. 9. Chatzigiannidou I, Teughels W, Wiele VT, Boon N. Oral biofilms exposure to chlorhexidine results in altered microbial composition and metabolic profile. NPJ Biofilms Microbiomes. 2020 Mar 20;6(1):13. https://www.nature.com/articles/s41522-020-0124-3
  13. 10. Brookes ZLS, Belfield LA, Ashworth A, Casas-Agustench P, Raja M, Pollard AJ, et al. Effects of chlorhexidine mouthwash on the oral microbiome. J Dent. 2021 Oct;113(103768):103768. https://doi.org/10.1016/j.jdent.2021.
  14. 103768
  15. 11. Liu T, Chen Y-C, Jeng S-L, Chang J-J, Wang J-Y, Lin C-H, et al. Short-term effects of chlorhexidine mouthwash and listerine on oral microbiome in hospitalized patients. Front Cell Infect Microbiol. 2023 Feb 2;13:1056534. https://doi.org/10.3389/fcimb.2023.1056534
  16. 12. Jeddy N, Ravi S, Radhika T, Lakshmi SLJ. Comparison of the efficacy of herbal mouth rinse with commercially available mouth rinses: A clinical trial. J Oral Maxillofac Pathol [Internet]. 2018 Sep;22(3):332–34. https://doi.org/10.4103/jomfp.JOMFP_303_18
  17. 13. Ugbogu OC, Emmanuel O, Agi GO, Ibe C, Ekweogu CN, Ude VC, et al. A review on the traditional uses, phytochemistry and pharmacological activities of clove basil (Ocimum gratissimum L.). Heliyon [Internet]. 2021 Nov;7(11):e08404. https://doi.org/10.1016/j.heliyon.2021.e08404
  18. 14. Carvalho LRRA, Boeder AM, Shimari M, Kleschyov AL, Esberg A, Johansson I, et al. Antibacterial mouthwash alters gut microbiome, reducing nutrient absorption and fat accumulation in Western diet-fed mice. Sci Rep [Internet]. 2024 Feb 18 [cited 2024 Oct 30];14(1):4025. https://www.nature.com/articles/s41598-024-54068-y
  19. 15. Safiya SN, Varghese RM, S AK, Shanmugam R. Antifungal activity of Ocimum tenuiflorum and Ocimum gratissimum herbal formulation-based oral rinse against Candida albicans. Cureus [Internet]. 2024 Aug;16(8):e67111. https://doi.org/10.7759/cureus.67111
  20. 16. Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, et al. Zebrafish embryos as an alternative to animal experiments--a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol. 2012 Apr;33(2):128–32. https://doi.org/10.1016/j.reprotox.2011.06.121
  21. 17. Yang L, Ho NY, Alshut R, Legradi J, Weiss C, Reischl M, et al. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol. 2009 Sep;28(2):245–53. https://doi.org/10.1016/j.reprotox.2009.
  22. 04.013
  23. 18. Lin Y, Yu J, Wang M, Wu L. Toxicity of single and combined 4-epianhydrotetracycline and cadmium at environmentally relevant concentrations on the zebrafish embryos (Danio rerio). Environ Pollut. 2023 Jan 1;316(Pt 1):120543. https://doi.org/10.1016/j.envpol.2022.120543
  24. 19. Gao Y, Li A, Zhang W, Pang S, Liang Y, Song M. Assessing the toxicity of bisphenol A and its six alternatives on zebrafish embryo/larvae. Aquat Toxicol [Internet]. 2022 May;246(106154):106154. https://doi.org/10.1016/j.aquatox.
  25. 2022.106154
  26. 20. Benli P, Çelik P. Glutathione and its dependent enzymes’ modulatory responses to neonicotinoid insecticide sulfoxaflor induced oxidative damage in zebrafish in vivo. Sci Progress. 2021;104(2):368504211028361. https://doi.org/10.1177/00368504211028361
  27. 21. Alak G, Parlak V, Ucar A, Yeltekin CA, Ozgeris FB, Cağlar O, et al. Oxidative and DNA damage potential of colemanite on zebrafish: Brain, liver and blood. Turkish J Fish Aquat Sci [Internet]. 2020;20(8):593–602. https://doi.org/10.4194/1303-2712-v20_8_02
  28. 22. Wang H, Jing C, Peng H, Liu S, Zhao H, Zhang W, et al. Parental whole-life-cycle exposure to tris (2-chloroethyl) phosphate (TCEP) disrupts embryonic development and the thyroid system in zebrafish offspring. Ecotoxicol Environ Saf [Internet]. 2022 Dec 15;248(114313):114313. https://doi.org/10.1016/j.ecoenv.2022.114313
  29. 23. Oliveira AC, Fascineli ML, Oliveira PM de, Gelfuso GM, Villacis RAR, Grisolia CK. Multi-level toxicity assessment of the antidepressant venlafaxine in embryos/larvae and adults of zebrafish (Danio rerio). Genet Mol Biol. 2023 Sep 8;46(3):e20220377. https://doi.org/10.1590/1678-4685-GMB-2022-0377
  30. 24. Pan M-X, Zheng C-Y, Deng Y-J, Tang K-R, Nie H, Xie J-Q, et al. Hepatic protective effects of Shenling Baizhu powder, a herbal compound, against inflammatory damage via TLR4/NLRP3 signalling pathway in rats with nonalcoholic fatty liver disease. J Integr Med. 2021 Sep;19(5):428–38. https://doi.org/10.1016/j.joim.2021.07.004
  31. 25. Vas NV, Varghese RM, Kumar A, Shanmugam R. Preparation of oral rinse using ethanolic extract of Ocimum tenuiflorum and evaluation of its antimicrobial activity and cytotoxicity. Nanotechnol Perceptions. 2024;444–55.
  32. 26. Tharani M, Rajeshkumar S, Al-Ghanim KA, Nicoletti M, Sachivkina N, Govindarajan M. Terminalia chebula- assisted silver nanoparticles: Biological potential, synthesis, characterization and ecotoxicity. Biomedicines. 2023 May 18;11(5):1472. https://doi.org/10.3390/biomedicines11051472
  33. 27. Kumaraguru M, Prabakar J, Indiran MA, Jeevanandan G, Shanmugam RK. In vitro evaluation of microhardness of hydrophilic pit and fissure sealants reinforced with green-synthesized silver nanoparticles. World J Dentistry. 2024 Apr 20;15(3):257‒61. https://doi.org/10.5005/jp-journals-10015-2395
  34. 28. Meeral PR, Prabakar J, Indiran MA, Ganesh J, Kumar SR. Silver nanoparticles incorporated hydrophilic pit and fissure sealant-its preparation, characterization and assessment of shear bond strength. J Popul Ther Clin Pharmacol. 2023;30(6):102‒09. ‎https://doi.org/10.47750/jptcp.2023.30.06.014
  35. 29. Bugel SM, Bonventre JA, Tanguay RL. Comparative Developmental Toxicity of Flavonoids Using an Integrative Zebrafish System. Toxicol Sci. 2016 Nov;154(1):55–68. https://doi.org/10.1093/toxsci/kfw139
  36. 30. Bharathidasan P, Sundar S, Shanmugam RK, Ramadoss R, Paneerselvam S, Ramani P. Antioxidant, anti-inflammatory and antidiabetic activity of Oolong tea mediated strontium nanoparticles. J Popul Ther Clin Pharmacol. 2023;30(8):511–16.
  37. 31. Arthi S, Ramani P, Rajeshkumar S. Green synthesis of Annona muricata mediated selenium nanoparticles and its
  38. antifungal activity against Candida albicans. J Popul Ther Clin Pharmacol. 2023;30(16):038. https://doi.org/10.47750/
  39. jptcp.2023.30.16.038

Downloads

Download data is not yet available.