Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 2 (2025)

Nematicidal potential of rhizobacteria against Meloidogyne graminicola in the rice-wheat cropping system

DOI
https://doi.org/10.14719/pst.6904
Submitted
26 December 2024
Published
08-05-2025 — Updated on 19-05-2025
Versions

Abstract

The rice-wheat cropping system (RWCS) is one of the most important cropping sequences for food self-security. In this RWCS, rice root-knot nematode, Meloidogyne graminicola is an emerging problem. To manage this nematode, the rhizospheric bacteria were isolated from three treatments using three media, NA, Kings’ B and TSA (Rice - Wheat - Crotalaria; Rice - Wheat - Mungbean; Rice - Wheat - Fallow) followed by RWCS. Out of six isolated bacteria, four bacteria showed the antagonist potential against M. graminicola. In vitro conditions, the bacteria isolated from fallow showed up to 31 % J2s mortality, 55-61 % in mungbean and 54-96 % in Crotalaria. The isolate, SRB7 showed 100 % juvenile mortality and 98.6 % hatching inhibition; finally, the isolates followed a pattern of SRB7 > SRB13 > SRB9 > SRB6 > SRB2 > SRB9. The bacterial isolates, SRB7 and SRB13, performed better than others in the attraction and penetration test. Through molecular characterization by 16s rRNA sequencing, the isolates SRB7, SRB13, SRB9 and SRBS6 were identified as B. subtilis (OL716087), B. cereus (OL716088), B. megaterium (OM816754) and Pseudomonas stutzeri (OL716089) in the soil collected from long-term RWCS fields. In the case of the pot study, these isolates decrease the nematode infestation by 83 % and increase plant growth by 82 % over the control. In the case of the pot study, these isolates decrease the nematode infestation by around 50 to 80 % over the control. The plant defence enzymes, PO, PPO and PAL activity reached a maximum on the sixth day and started to decrease. The long-term incorporation of green manure crop Crotalaria and mung bean in RWCS increases the beneficial soil microbes, suppressing the M. graminicola population and increasing the yield in the rice-wheat cropping system.

References

  1. 1. Dhanda S, Yadav A, Yadavs DB, Chauhan BS. Emerging issues and potential opportunities in the rice–wheat cropping system of North-Western India. Front Plant Sci. 2022;13:832683. https://doi.org/10.3389/fpls.2022.832683
  2. 2. Bhatt R, Singh P, Hossain A, Timsina J. Rice–wheat system in the northwest Indo-Gangetic plains of South Asia: issues and technological interventions for increasing productivity and sustainability. Paddy Water Environ. 2021;19(3):345–65. https://doi.org/10.1007/s10333-021-00846-7
  3. 3. Khan MR, Haque Z, Ahamad F, Shah MH. Nematode problems in rice and their sustainable management. In: Mujeebur RK, Marisol Q, editors. Nematode diseases of crops and their sustainable management. New York: Academic Press; 2023. p.133–66. https://doi.org/10.1016/B978-0-323-91226-6.00001-8
  4. 4. Ahmad S, ur Rehman F, Adnan M, Ahmad I, Ahmad S, Iqbal Z, et al. Rice nematodes and their integrated management. In Sarwar N, Atique-ur-Rehman, Ahmad S, Hasanuzzaman M, editors. Modern techniques of rice crop production. Singapore:Springer; 2022; p. 517–43. https://doi.org/10.1007/978-981-16-4955-4_26
  5. 5. Khan MR, Anwer MA. Occurrence of rice root-knot nematode and yield loss assessment in Aligarh and Hathras districts of Uttar Pradesh, India. Indian J Nematol. 2011;41(1):34–40.
  6. 6. Sowmya R, Kumar H, Devaraja KP, Kumar A, AP AG. Influence of summer green manuring on soil nematode population under rice-wheat cropping system. Indian J Nematol. 2021;51(1):1–0. https://.doi.org/10.5958/0974-4444.2021.00001.9
  7. 7. Haque Z, Khan MR, Zamir S, Pandey K, Rajana RN, Gupta N. Fungal antagonists and their effectiveness to manage the rice root-knot nematode, Meloidogyne graminicola. In Chaudhary KK, Meghvansi MK, Siddiqui S, editors. Sustainable Management of Nematodes in Agriculture, Vol 2: Role of Microbes-Assisted Strategies. Sustainability in Plant and Crop Protection, vol 19. Cham:Springer; 2024. p. 237–47. https://doi.org/10.1007/978-3-031-52557-5_9
  8. 8. Arone GJ, Ocaña R, Sánchez A, Villadas PJ, Fernández-López M. Benefits of Crotalaria juncea L. as green manure in fertility and soil microorganisms on the Peruvian Coast. Microorganisms. 2024;12(11):2241. https://doi.org/10.3390/
  9. microorganisms12112241
  10. 9. Zannopoulos S, Gazoulis I, Kokkini M, Antonopoulos N, Kanatas P, Kanetsi M, et al. The potential of three summer legume cover crops to suppress weeds and provide ecosystem services—a review. Agronomy. 2024;14(6):1192. https://doi.org/10.3390/agronomy14061192
  11. 10. Katoch V, Shavnam, Sharma S, Negi M. Utilization of plant growth-promoting rhizobacteria (PGPR) for managing recently reported potato cyst nematodes, Globodera spp. in North Himalayan regions of India. Potato Res. 2024;67(2):463–78. https://doi.org/10.1007/s11540-023-09648-2
  12. 11. Vinothini K, Nakkeeran S, Saranya N, Jothi P, Richard JI, Perveen K, et al. Rhizosphere engineering of biocontrol agents enriches soil microbial diversity and effectively controls root-knot nematodes. Microb Ecol. 2024;87(1):120. https://doi.org/10.1007/s00248-024-02435-7
  13. 12. Maheshwari NK, Singh RP, Manchanda G, Dubey RC, Maheshwari DK. Sunn hemp (Crotalaria juncea) nodulating bacteria capable for high antagonistic potential and plant growth promotion attributes: Sun hemp nodulating rhizobia. J Microbiol Biotechnol Food Sci. 2020;10(3):385–9. https://doi.org/10.15414/jmbfs.2020.10.3.385-389
  14. 13. Gerhardt P, Murray R, Costilow RN, Eugene WN, Willis AW, Krieg NR et al. Manual of methods for general bacteriology. American Scociety for Microbiology; 1981.
  15. 14. Beischer NA, Oats JN, Henry OA, Sheedy MT, Walstab JE. Incidence and severity of gestational diabetes mellitus according to country of birth in women living in Australia. Diabetes. 1991;40:35–8. https://doi.org/10.2337/diab.
  16. 40.2.S35
  17. 15. Schaad NW, Jeffrey BJ, Wesley C. Laboratory guide for the identification of plant pathogenic bacteria. St. Paul: American Phytopathological Society; 2001.
  18. 16. Lysenko O. Pseudomonas - An attempt at a ?eneral classification. Microbiol. 1961;25(3):379–408. https://doi.org/10.1099/00221287-25-3-379
  19. 17. Cody RM. Distribution of chitinase and chitobiase in Bacillus. Curr Microbiol 1989;19:201–5. https://doi.org/
  20. 10.1007/BF01570162
  21. 18. Olajuyigbe FM, Ajele JO. Production dynamics of extracellular protease from Bacillus species. Afr J Biotechnol. 2005;4(8):776–9.
  22. 19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9. https://doi.org/10.1093/molbev/msy096
  23. 20. Hussey RS, Barker KR. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis. Rep.1973;57:1025-1028. https://doi/full/10.5555/19740810950
  24. 21. Southey JF. Laboratory methods for work with plant and soil nematodes. London: Ministry of Agriculture, Fisheries and Food, HMSO; 1986.
  25. 22. Wang C, Lower S, Williamson VM. Application of Pluronic gel to the study of root-knot nematode behaviour. Nematol. 2009;11(3):453–64. https://doi.org/10.1163/156854109X447024
  26. 23. Linsell KJ, Riley IT, Davies KA, Oldach KH. Characterisation of resistance to Pratylenchus thornei (Nematoda) in wheat (Triticum aestivum): attraction, penetration, motility and reproduction. Phytopathol. 2014;104(2):174–87. https://doi.org/10.1094/PHYTO-12-12-0345-R
  27. 24. Cobb NA. Estimating the nematode population of soil, with special reference to the sugar-beet and root-gall nemas, Heterodera schachtii Schmidt and Heterodera radicicola (Greef) Müller, and with a description of Tylencholaimus aequalis n. sp. Chicago: US Government Printing Office; 1918.
  28. 25. Schindler AR, Stewart RN, Semeniuk P. A synergistic Fusarium-nematode interaction in carnation. Phytopathol. 1961;51(3):143–6.
  29. 26. Keilin D, Hartree EF. Catalase, peroxidase and metmyoglobin as catalysts of coupled peroxidatic reactions. Biochem J. 1955;60(2):310. https://doi.org/10.1042/bj0600310
  30. 27. Hammerschmidt R, Ku?h J. Lignification as a mechanism for induced systemic resistance in cucumber. Physiol Plant Pathol 1982;20(1):61–71. https://doi.org/10.1016/0048-4059(82)90024-8
  31. 28. Mayer AM, Harel E. Polyphenol oxidases in plants. Phytochem. 1979;18(2):193–215. https://doi.org/10.1016/0031-9422(79)80057-6
  32. 29. Brueske CH. Phenylalanine ammonia lyase activity in tomato roots infected and resistant to the root-knot nematode, Meloidogyne incognita. Physiolog Plant Patholog. 1980;16(3):409–14. https://doi.org/10.1016/S0048-4059(80)80012-9
  33. 30. Ali M, Ali Q, Sohail MA, Ashraf MF, Saleem MH, Hussain S, et al. Diversity and taxonomic distribution of endophytic bacterial community in the rice plant and its prospects. Intl J Mol Sci 2021;22(18):10165. https://doi.org/ 10.3390/ijms221810165
  34. 31. BiBi A, Bibi S, Al-Ghouti MA, Abu-Dieyeh MH. Isolation and evaluation of Qatari soil rhizobacteria for antagonistic potential against phytopathogens and growth promotion in tomato plants. Sci Rep. 2023;13(1):22050. https://doi.org/10.1038/s41598-023-49304-w
  35. 32. Etminani F, Harighi B. Isolation and identification of endophytic bacteria with plant growth-promoting activity and biocontrol potential from wild pistachio trees. The Plant Pathol J. 2018;34(3):208.10.5423/PPJ.OA.07.2017.0158
  36. 33. Ajulo AA, Bezerra GD, de Oliveira RS, Gonçalves AR, Moura MF, Cardoso MA, et al. Efficiency of bacterial isolates in suppressing brown spot in rice plants. J.Phytopathol. 2024;172(2):e13294. https://doi.org/10.1111/jph.13294
  37. 34. Gupta RM, Kale PS, Rathi ML. Isolation, characterization and identification of endophytic bacteria by 16s rRNA partial sequencing technique from roots and leaves of Prosopis cineraria plant. Asian J Plant Sci Res. 2015;5(6):36–43.
  38. 35. Hyder S, Gondal AS, Rizvi ZF, Ahmad R, Alam MM, Hannan A, et al. Characterization of native plant growth-promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.). Sci Rep. 2020;10(1):13859. https://doi.org/10.1038/s41598-020-69410-3
  39. 36. Sherpa MT, Sharma L, Bag N, Das S. Isolation, characterization and evaluation of native rhizobacterial consortia developed from the rhizosphere of rice grown in organic state Sikkim, India and their effect on plant growth. Front Microbiol 2021;12:713660. https://doi.org/10.3389/fmicb.2021.713660
  40. 37. Ye S, Zhou S, Ma Y, Yang J, Shi X, Zhang R, et al. Biocontrol activity and potential mechanism of Bacillus cereus G5 against Meloidogyne graminicola. PesticBiochem Physiol 2024;204:106079. https://doi.org/10.1016/j.pestbp.2024.
  41. 106079
  42. 38. Zhao J, Wang S, Zhu X, Wang Y, Liu X, Duan Y, et al. Isolation and characterization of nodules endophytic bacteria Pseudomonas protegens Sneb1997 and Serratia plymuthica Sneb2001 for the biological control of root-knot nematode. Appl Soil Ecol. 2021;164:103924. https://doi.org/10.1016/j.apsoil.2021.103924
  43. 39. Jia C, Ruan WB, Zhu MJ, Ren AZ, Gao YB. Potential antagonism of cultivated and wild grass–endophyte associations towards Meloidogyne incognita. Biolog Control. 2013;64(3):225–30. https://doi.org/10.1016/j.biocontrol.
  44. 2012.11.008
  45. 40. Ye S, Yan R, Li X, Lin Y, Yang Z, Ma Y, et al.Biocontrol potential of Pseudomonas rhodesiae GC-7 against the root-knot nematode Meloidogyne graminicola through both antagonistic effects and induced plant resistance. Front Microbiol. 2022;13:1025727. https://doi.org/10.3389/fmicb.2022.1025727
  46. 41. Subudhi RP, Das N, Anjali T, Ahuja A, Gangwar S. Effect of bacterial antagonists on multiplication of root-knot nematode (Meloidogyne graminicola) in rice. JEntomol Zool Stud. 2020;8:1379–82.
  47. 42. Patil N, Raghu S, Mohanty L, Jeevan B, Basana-Gowda G, Adak T, et al. Rhizosphere bacteria isolated from medicinal plants improve rice growth and induce systemic resistance in the host against the pathogenic fungus. J Plant Growth Reg. 2024;43(3):770–86. https://doi.org/10.1007/s00344-023-11137-2
  48. 43. El-Hadad ME, Mustafa MI, Selim SM, El-Tayeb TS, Mahgoob AE, Aziz NH. The nematicidal effect of some bacterial biofertilizers on Meloidogyne incognita in sandy soil. Braz J Microbiol 2011;42:105–13. https://doi.org/10.1590/S1517-83822011000100014
  49. 44. Antil S, Kumar R, Pathak DV, Kumari A. Recent advances in utilizing bacteria as biocontrol agents against plant parasitic nematodes emphasizing Meloidogyne spp. Biol Control. 2023;183:105244. https://doi.org/10.1016/
  50. j.biocontrol.2023.105244
  51. 45. Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, et al. Plant secondary metabolites: The weapons for biotic stress management. Metabolites. 2023;13(6):716. https://doi.org/10.3390/metabo13060716
  52. 46. Jha Y, Mohamed HI. Plant secondary metabolites as a tool to investigate biotic stress tolerance in plants: a review. Gesunde Pflanzen. 2022;74(4):771–90. https://doi.org/10.1007/s10343-022-00669-4
  53. 47. Engelbrecht G, Horak I, Jansen van Rensburg PJ, Claassens S. Bacillus-based bionematicides: development, modes of action and commercialization. Biocontrol SciTechnol. 2018;28(7):629–53. https://doi.org/10.1080/
  54. 09583157.2018.1469000
  55. 48. Gao H, Qi G, Yin R, Zhang H, Li C, Zhao X. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci Rep. 2016;6(1):28756. https://doi.org/10.1038/srep28756
  56. 49. Anita B, Samiyappan R. Induction of systemic resistance in rice by Pseudomonas fluorescens against rice root knot nematode Meloidogyne graminicola. J Biopest. 2012;5:53. https://doi.org/10.57182/jbiopestic.5.0.53-59
  57. 50. Malviya D, Singh P, Singh UB, Paul S, Kumar Bisen P, Rai JP, et al. Arbuscular mycorrhizal fungi-mediated activation of plant defence responses in direct-seeded rice (Oryza sativa L.) against root-knot nematode Meloidogyne graminicola. Front Microbiol. 2023;14:1104490. https://doi.org/10.3389/fmicb.2023.1104490

Downloads

Download data is not yet available.