Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Regenerative agriculture for sustainable crop productivity: A comprehensive review

DOI
https://doi.org/10.14719/pst.6938
Submitted
27 December 2024
Published
09-08-2025
Versions

Abstract

Regenerative Agriculture is a promising concept that aims to address the challenges posed by conventional farming methods, which often lead to soil degradation and reduced productivity over time. The ultimate goal of regenerative agriculture is to revitalize the soil and landscape while offering environmental, economic and social advantages to communities. Prioritizing soil health and carbon sequestration are the key principles of regenerative agriculture. These principles include maintaining soil cover, minimizing disturbance, sustaining living roots year-round, fostering species diversity, incorporating livestock, and reducing synthetic inputs such as herbicides and fertilizers. The implementation of crop diversification and rotation techniques is a key strategy in regenerative agriculture. These techniques promote the cycling of nutrients into the soil and enhance the diversity of soil microorganisms such as bacteria. Agroforestry, another component of regenerative agriculture, contributes to carbon sequestration by utilizing stable deep-rooted systems and storing carbon within plant biomass. However, the overall efficacy of these methods may vary in different environments. Potential limitations include the upper thresholds for carbon sequestration and increased nitrogen demand. Although there are challenges to be addressed, regenerative agriculture shows promise in improving soil quality, crop productivity, and overall farm economics. This represents a shift towards more sustainable and resilient farming practices that could benefit the environment and communities.

References

  1. 1. Poore J, Nemecek T. Reducing food's environmental impacts through producers and consumers. Sci. 2018;360(6392):987–92. https://doi.org/10.1126/science.aaq0216
  2. 2. Campbell BM, Beare DJ, Bennett EM, Hall–Spencer JM, Ingram JS, Jaramillo F, et al. Agriculture production as a major driver of the earth system exceeding planetary boundaries. Eco Soc. 2017;22(4). https://doi.org/10.5751/ES–09595–220408
  3. 3. Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. The Lancet. 2019;393(10170):447–92. https://doi.org/10.1016/S0140–6736(18)31788-4
  4. 4. Tilman D, Clark M. Global diets link environmental sustainability and human health. Nature. 2014;515(7528):518–22. https://doi.org/10.1038/nature13959
  5. 5. Van Zanten HH, Herrero M, Van Hal O, Röös E, Muller A, Garnett T, et al. Defining a land boundary for sustainable livestock consumption. Glob Chang Biol. 2018;24(9):4185–94. https://doi.org/10.1111/gcb.14321
  6. 6. Food and Agriculture Organization (FAO). Policy support guidelines for the promotion of sustainable production intensification and ecosystem services [Internet]. Food and Agriculture Organization of the UN (FAO); 2013.
  7. 7. LaCanne CE, Lundgren JG. Regenerative agriculture: merging farming and natural resource conservation profitably. Peer J. 2018;6:e4428. https://doi.org/10.7717/peerj.4428
  8. 8. Giller KE, Hijbeek R, andersson JA, Sumberg J. Regenerative agriculture: an agronomic perspective. Outlook Agric. 2021;50(1):13–25. https://doi.org/10.1177/0030727021998063
  9. 9. Robinson JM, Liddicoat C, Muñoz–Rojas M, Breed MF. Restoring soil biodiversity. Curr Biol. 2024;34(9): R393–98. https://doi.org/10.1016/j.cub.2024.02.035
  10. 10. Czekaj M, Adamsone-Fiskovica A, Tyran E, Kilis E. Small farms' resilience strategies to face economic, social and environmental disturbances in selected regions in Poland and Latvia. Glob Food Secur. 2020;26:100416. https://doi.org/10.1016/j.gfs.2020.100416
  11. 11. Soto RL, Martínez–Mena M, Padilla MC, de Vente J. Restoring soil quality of woody agroecosystems in Mediterranean drylands through regenerative agriculture. Agric Ecosyst Environ. 2021;306:107191. https://doi.org/10.1016/j.agee.2020.107191
  12. 12. Kapoor V. Grand view research. Regenerative agriculture market size and share report. San Francisco: Grand View Research; 2023. Available from: https://www.grandviewresearch.com/industry–analysis/regenerative–agriculture–market–report
  13. 13. Gosnell H, Gill N, Voyer M. Transformational adaptation on the farm: Processes of change and persistence in transitions to 'climate-smart' regenerative agriculture. Glob Environ Change. 2019;59:101965. https://doi.org/10.1016/j.gloenvcha.2019.101965
  14. 14. Newton P, Civita N, Frankel-Goldwater L, Bartel K, Johns C. What is regenerative agriculture? A review of scholar and practitioner definitions based on processes and outcomes. Front Sustain Food Syst. 2020;4:577723. https://doi.org/10.3389/fsufs.2020.577723
  15. 15. Rodale R. Breaking new ground: The search for a sustainable agriculture. Futurist. 1983;17(1):15–20.
  16. 16. Seymour M, Connelly S. Regenerative agriculture and a more-than-human ethic of care: a relational approach to understanding transformation. Agric Human Values. 2023;40(1):231-44. https://doi.org/10.1007/s10460–022–10350–1
  17. 17. Cusworth G, Garnett T. What is regenerative agriculture? TABLE Explainer. TABLE, University of Oxford, Swedish University of Agricultural Sciences and Wageningen University and Research [Internet]; 2023. https://doi.org/10.56661/2d7b8d1c
  18. 18. Khangura R, Ferris D, Wagg C, Bowyer J. Regenerative agriculture-A literature review on the practices and mechanisms used to improve soil health. Sustain. 2023;15(3):2338. https://doi.org/10.3390/su15032338
  19. 19. Jordon MW, Smith P, Long PR, Bürkner PC, Petrokofsky G, Willis KJ. Can regenerative agriculture increase national soil carbon stocks? Simulated country-scale adoption of reduced tillage, cover cropping and ley-arable integration using RothC. Sci Total Environ. 2022;825:153955. https://doi.org/10.1016/j.scitotenv.2022.153955
  20. 20. Grelet G, Lang S, Merfield C, Calhoun N, Robson–Williams M, Horrocks A, et al. Regenerative agriculture in Aotearoa New Zealand - research pathways to build science-based evidence and national narratives. Lincoln, New Zealand: Manaaki Whenua - Landcare Research; 2021. p. 59 Available from: https://www.landcareresearch.co.nz/publications/regenag/regenerative-agriculture-white-papersets-out-pressing-research-priorities/
  21. 21. Page C, Witt B. A leap of faith: regenerative agriculture as a contested worldview rather than as a practice change issue. Sustain. 2022;14(22):14803. https://doi.org/10.3390/su142214803
  22. 22. Lal R. Regenerative agriculture for food and climate. J Soil Water Conserv. 2020;75(5):123A-4A. https://doi.org/10.2489/jswc.2020.0620A
  23. 23. Loring PA. Regenerative food systems and the conservation of change. Agriculture and Human Values. 2022;39(2):701–13. https://doi.org/10.1007/s10460–021–10282–2
  24. 24. Thapa B, Dura R. A review on tillage system and no–till agriculture and its impact on soil health. Arch Agric Environ Sci. 2024;9(3):612–17. https://doi.org/10.26832/24566632.2024.0903028
  25. 25. Diwan AD, Harke SN, Pande BN, Panche A. Regenerative agriculture farming. Indian Farming. 2021;71(12).
  26. 26. Elevitch CR, Mazaroli DN, Ragone D. Agroforestry standards for regenerative agriculture. Sustain. 2018;10(9):3337. https://doi.org/10.3390/su10093337
  27. 27. Gosnell H, Charnley S, Stanley P. Climate change mitigation as a co-benefit of regenerative ranching: insights from Australia and the United States. Interface Focus. 2020;10(5):20200027. https://doi.org/10.1098/rsfs.2020.0027
  28. 28. Rehberger E, West PC, Spillane C, McKeown PC. What climate and environmental benefits of regenerative agriculture practices? an evidence review. Environ Res Commun. 2023;5(5):052001. https://doi.org/10.1088/2515–7620/acd6dc
  29. 29. Mondal S, Chakraborty D. Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity. Geoderma. 2022;405:115443. https://doi.org/10.1016/j.geoderma.2021.115443
  30. 30. Al-Kaisi MM, Lal R. Aligning science and policy of regenerative agriculture. Soil Sci Soc Am J. 2020;84(6):1808–20. https://doi.org/10.1002/saj2.20162
  31. 31. Mary B, Clivot H, Blaszczyk N, Labreuche J, Ferchaud F. Soil carbon storage and mineralization rates are affected by carbon inputs rather than physical disturbance: Evidence from a 47-year tillage experiment. Agric Ecosyst Environ. 2020;299:106972. https://doi.org/10.1016/j.agee.2020.106972
  32. 32. Colbach N, Cordeau S. Are no–till herbicide-free systems possible? A simulation study. Front Agron. 2022;4:823069. https://doi.org/10.3389/fagro.2022.823069
  33. 33. Taylor HL. Bull tillage systems. In: Agricultural Resources: Inputs Situation and Outlook Report. AR–25. Economic Research Service, USDA, Washington DC; 1992. p. 20–24
  34. 34. Clausen JC, Jokela WE, Potter Iii FI, Williams JW. Paired watershed comparison of tillage effects on runoff, sediment and pesticide losses. ASA, CSSA and SSSA. 1996;25(5):1000–07. https://doi.org/10.2134/jeq1996.00472425002500050011x
  35. 35. Sahu G, Das S. Regenerative agriculture: Future of sustainable food production. Biotica Res Today. 2020;2(8):745–48.
  36. 36. Haddaway NR, Hedlund K, Jackson LE, Kätterer T, Lugato E, Thomsen IK, et al. How does tillage intensity affect soil organic carbon? A systematic review. Environ Evid. 2017;6:1–48. https://doi.org/10.1186/s13750–017–0108–9
  37. 37. Huang Y, Ren W, Wang L, Hui D, Grove JH, Yang X, et al. Greenhouse gas emissions and crop yield in no-tillage systems: A meta–analysis. Agric Ecosyst Environ. 2018;268:144–53. https://doi.org/10.1016/j.agee.2018.09.002
  38. 38. Nouri A, Lee J, Yin X, Tyler DD, Saxton AM. Thirty-four years of no-tillage and cover crops improve soil quality and increase cotton yield in Alfisols, Southeastern USA. Geoderma. 2019;337:998–1008. https://doi.org/10.1016/j.geoderma.2018.10.016
  39. 39. Radford BJ, Thornton CM. Effects of 27 years of reduced tillage practices on soil properties and crop performance in the semi–arid subtropics of Australia. Int J Energy Environ Econ. 2011;19(6):565.
  40. 40. Beillouin D, Ben–Ari T, Malezieux E, Seufert V, Makowski D. Benefits of crop diversification for biodiversity and ecosystem services. BioRxiv. 2020. https://doi.org/10.1101/2020.09.30.320309
  41. 41. Cusworth G, Garnett T, Lorimer J. Agroecological break out: Legumes, crop diversification and the regenerative futures of UK agriculture. J Rural Stud. 2021;88:126–37. https://doi.org/10.1016/j.jrurstud.2021.10.005
  42. 42. Levin B. Regenerative agriculture as biodiversity islands. In: Florencia M, editor. Biodiversity islands: Strategies for Conservation in Human-dominated Environments. Cham: Springer International Publishing; 2022. p. 61–88. https://doi.org/10.1007/978–3–030–92234–4_3
  43. 43. MacLaren C, Mead A, van Balen D, Claessens L, Etana A, de Haan J, et al. Long-term evidence for ecological intensification as a pathway to sustainable agriculture. Nat Sustain. 2022;5(9):770–79. https://doi.org/10.1038/s41893–022–00911–x
  44. 44. MacLaren C, Swanepoel P, Bennett J, Wright J, Dehnen-Schmutz K. Cover crop biomass production is more important than diversity for weed suppression. Crop Sci. 2019;59(2):733–48. https://doi.org/10.2135/cropsci2018.05.0329
  45. 45. Gill M, Daberkow S. Crop sequences among 1990 major field crops and associated farm program participation. 1991:39–46.
  46. 46. Kaye JP, Quemada M. Using cover crops to mitigate and adapt to climate change. A review. Agron Sustain Dev. 2017;37:1–7. https://doi.org/10.1007/s13593–016–0410–x
  47. 47. Jian J, Du X, Reiter MS, Stewart RD. A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biol Biochem. 2020;143:107735. https://doi.org/10.1016/j.soilbio.2020.107735
  48. 48. Sauer TJ, Dold C, Ashworth AJ, Nieman CC, Hernandez–Ramirez G, Philipp D, et al. Agroforestry practices for soil conservation and resilient agriculture. AFES. 2021:19–48. https://doi.org/10.1007/978–3–030–80060–4_2
  49. 49. Vinodhini SM, Manibharathi S, Pavithra G, Sakthivel S. Agroforestry: Integrating trees into agricultural systems. In: Recent approaches in agriculture. Vol. 2. Elite Publishing House; 2023. p. 246–58
  50. 50. Dissanayaka DM, Dissanayake DK, Udumann SS, Nuwarapaksha TD, Atapattu AJ. Agroforestry-A key tool in the climate-smart agriculture context: A review on coconut cultivation in Sri Lanka. Front Agron. 2023;5:1162750. https://doi.org/10.3389/fagro.2023.1162750
  51. 51. Choudhary A, Rijhwani S. Microbial diversity in selected agroforestry systems of Central Rajasthan. Int J Life Sci Pharma Res. 2020;10:65–73. https://doi.org/10.22376/ijpbs/lpr.2020.10.5.L65-73
  52. 52. Riyadh ZA, Rahman MA, Saha SR, Hossain MI. Soil properties under jackfruit-based agroforestry systems in Madhupur tract of Narsingdi district. J Sylhet Agric Univ. 2018;5:173–79.
  53. 53. Aldeen AS, Majid NM, Azani AM, Abd Ghani AN, Mohamed S. Agroforestry impacts on soil fertility in the Rima'a Valley, Yemen. J Sustain For. 2013;32(3):286–309. https://doi.org/10.1080/10549811.2012.654723
  54. 54. Muchane MN, Sileshi GW, Gripenberg S, Jonsson M, Pumariño L, Barrios E. Agroforestry boosts soil health in the humid and sub–humid tropics: A meta-analysis. Agr Ecosyst Environ. 2020;295:106899. https://doi.org/10.1016/j.agee.2020.106899
  55. 55. Wagner M, Waterton C, Norton LR. Mob grazing: a nature–based solution for British farms producing pasture-fed livestock. Nature Based Soutions. 2023;3:100054. https://doi.org/10.1016/j.nbsj.2023.100054
  56. 56. Ranaivoson L, Naudin K, Ripoche A, Affholder F, Rabeharisoa L, Corbeels M. Agro-ecological functions of crop residues under conservation agriculture: A review. Agron Sustain Dev. 2017;37:1–7. https://doi.org/10.1007/s13593–017–0432–z
  57. 57. Miles M. Identification, pest status, ecology and management of the green mirid, a pest of cotton in Australia [Dissertation]. University of Queensland, St Lucia, Australia; 2005
  58. 58. Espí E, Salmerón A, Fontecha A, García Y, Real AI. Plastic films for agricultural applications. J Plastic Film Sheeting. 2006;22(2):85–102. https://doi.org/10.1177/8756087906064220
  59. 59. Schales FD. Agricultural plastics use in the United States. In: Proceedings of the 11th International congress on the use of plastics in agriculture, New Delhi, India, A A Balkema; 1991.
  60. 60. Smith MW. Cultivar and mulch affect cold injury of young pecan trees. J Am Pomol Soc. 2000;54(1):29–33.
  61. 61. Smit EH, Strauss JA, Swanepoel PA. Utilization of cover crops: implications for conservation agriculture systems in a mediterranean climate region of South Africa. Plant Soil. 2021;462:207–18. https://doi.org/10.1007/s11104–021–04864–6
  62. 62. Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil. 2009;321:5–33. https://doi.org/10.1007/s11104–009–9925–0
  63. 63. Sartori F, Piccoli I, Polese R, Berti A. Transition to conservation agriculture: how tillage intensity and covering affect soil physical parameters. Soil. 2022;8(1):213–22. https://doi.org/10.5194/soil–8–213–2022
  64. 64. Sanderman J. Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia. Agric Ecosyst Environ. 2012;155:70–77. https://doi.org/10.1016/j.agee.2012.04.015
  65. 65. Derner JD, Boutton TW, Briske DD. Grazing and ecosystem carbon storage in the North American Great Plains. Plant Soil. 2006;280:77–90. https://doi.org/10.1007/s11104–005–2554–3
  66. 66. Breewood H, Garnett T. Meat, metrics and mindsets: Exploring debates on the role of livestock and alternatives in diets and farming. University of Oxford, Swedish University of Agricultural Sciences, Wageningen University and Research; 2023. https://doi.org/10.56661/2caf9b92
  67. 67. Bell LW, Moore AD, Kirkegaard JA. Evolution in crop-livestock integration systems that improve farm productivity and environmental performance in Australia. Agric Ecosyst Environ. 2014;57:10–20. https://doi.org/10.1016/j.eja.2013.04.007
  68. 68. Kumawat A, Yadav D, Samadharmam K, Rashmi I. Soil and water conservation measures for agricultural sustainability; Soil moisture importance. IntechOpen; 2021. Available from: https://doi.org/10.5772/intechopen.92895
  69. 69. Doan TT, Sisouvanh P, Sengkhrua T, Sritumboon S, Rumpel C, Jouquet P, Bottinelli N. Site-specific effects of organic amendments on parameters of tropical agricultural soil and yield: A field experiment in three countries in Southeast Asia. Agron. 2021;11(2):348. https://doi.org/10.3390/agronomy11020348
  70. 70. Urra J, Alkorta I, Garbisu C. Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agron. 2019;9(9):542. https://doi.org/10.3390/agronomy9090542
  71. 71. Gómez–Sagasti MT, Hernández A, Artetxe U, Garbisu C, Becerril JM. How valuable are organic amendments as tools for the phytomanagement of degraded soils? The knowns, known unknowns and unknowns. Front Sustain Food Syst. 2018;2:68. https://doi.org/10.3389/fsufs.2018.00068
  72. 72. White RE, Andrew M. Orthodox soil science versus alternative philosophies: a clash of cultures in a modern context. Sustain. 2019;11(10):2919. https://doi.org/10.3390/su11102919
  73. 73. Schreefel L, Schulte RP, De Boer IJ, Schrijver AP, Van Zanten HH. Regenerative agriculture-the soil is the base. Glob Food Sec. 2020;26:100404. https://doi.org/10.1016/j.gfs.2020.100404
  74. 74. Hughes N, Lu M, Soh WY, Lawson K. Modelling the effects of climate change on the profitability of Australian farms. Clim Change. 2022;172(1):12. https://doi.org/10.1007/s10584-022-03356–5
  75. 75. Mohanty LK, Singh NK, Raj P, Prakash A, Tiwari AK, Singh V, Sachan P. Nurturing crops, enhancing soil health and sustaining agricultural prosperity worldwide through agronomy. J Exp Agric Int. 2024;46(2):46–67. https://doi.org/10.9734/JEAI/2024/v46i22308
  76. 76. Meena RS, Kumar S, Yadav GS. Soil carbon sequestration in crop production. In: Meena RS, editor. Nutr Dyn Sustain Crop Prod. Singapore: Springer; 2020. p. 1–39. https://doi.org/10.1007/978-981–13–8660–2_1
  77. 77. McCann KS. The diversity-stability debate. Nature. 2000;405(6783):228–33. https://doi.org/10.1038/35012234
  78. 78. Kim N, Zabaloy MC, Guan K, Villamil MB. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Bio Biochem. 2020;142:107701. https://doi.org/10.1016/j.soilbio.2019.107701
  79. 79. Singh I, Hussain M, Manjunath G, Chandra N, Ravikanth G. Regenerative agriculture augments bacterial community structure for a healthier soil and agriculture. Front Agron. 2023;5:1134514. https://doi.org/10.3389/fagro.2023.1134514
  80. 80. Delitte M, Caulier S, Bragard C, Desoignies N. Plant microbiota beyond farming practices: a review. Front Sustain Food Syst. 2021;5:624203. https://doi.org/10.3389/fsufs.2021.624203
  81. 81. Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. The role of soil microorganisms in plant mineral nutrition–current knowledge and future directions. Front Plant Sci. 2017;8:1617. https://doi.org/10.3389/fpls.2017.01617
  82. 82. Herrmann MN, Wang Y, Hartung J, Hartmann T, Zhang W, Nkebiwe PM, et al. A global network meta-analysis of the promotion of crop growth, yield and quality by bioeffectors. Front Plant Sci. 2022;13:816438. https://doi.org/10.3389/fpls.2022.816438
  83. 83. Tabacchioni S, Passato S, Ambrosino P, Huang L, Caldara M, Cantale C, et al. Identification of beneficial microbial consortia and bioactive compounds with potential as plant biostimulants for a sustainable agriculture. Microorg. 2021;9(2):426. https://doi.org/10.3390/microorganisms9020426
  84. 84. Bazany KE, Delgado-Baquerizo M, Thompson A, Wang JT, Otto K, Adair Jr RC, et al. Management-induced shifts in rhizosphere bacterial communities contribute to the control of pathogen causing citrus greening disease. J Sustain Agric Environ. 2022;1(4):275–86. https://doi.org/10.1002/sae2.12029
  85. 85. Melloni R, Cardoso EJ. Microbiome associated with olive cultivation: a review. Plants. 2023;12(4):897. https://doi.org/10.3390/plants12040897
  86. 86. West TO, Post WM. Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Science Soc America J. 2002;66(6):1930–46. https://doi.org/10.2136/sssaj2002.1930
  87. 87. Minasny B, Arrouays D, McBratney AB, Angers DA, Chambers A, Chaplot V, et al. Rejoinder to comments on Minasny et al., soil carbon 4 per mille Geoderma 229, 59-86. Geoderma. 2018;309:124–29. https://doi.org/10.1016/j.geoderma.2017.05.026
  88. 88. Lal R. Soil carbon sequestration impacts on global climate change and food security. Sci. 2004;304(5677):1623–27. https://doi.org/10.1126/science.1097396
  89. 89. Vinodhini SM, Ashok AS, Manibharathi S, Kalaimathi V. Climate smart agriculture - Mitigating climate change impacts on crop production. In: Polara AM, Sahoo S, Jolly GE, Chennalwad SP, Asodaria KB, editors. Novel approaches in Agronomy. Vol. 2. Elite Publishing House; 2023. p. 15–37
  90. 90. Amelung W, Bossio D, de Vries W, Kogel-Knabner I, Lehmann J, Amundson R, et al. Towards a global-scale soil climate mitigation strategy. Nat Commun. 2020;11(1):5427. https://doi.org/10.1038/s41467–020–18887–7
  91. 91. Nunes MR, van Es HM, Schindelbeck R, Ristow AJ, Ryan M. No-till and cropping system diversification improve soil health and crop yield. Geoderma. 2018;328:30–43. https://doi.org/10.1016/j.geoderma.2018.04.031
  92. 92. Sun W, Canadell JG, Yu L, Yu L, Zhang W, Smith P, et al. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob Change Biol. 2020;26(6):3325–35. https://doi.org/10.1111/gcb.15001
  93. 93. Muhammad I, Sainju UM, Zhao F, Khan A, Ghimire R, Fu X, Wang J. Regulation of soil CO2 and N2O emissions by cover crops: A meta–analysis. Soil Tillage Res. 2019;192:103–12. https://doi.org/10.1016/j.still.2019.04.020
  94. 94. Xu P, Li G, Houlton BZ, Ma L, Ai D, Zhu L, et al. Role of organic and conservation agriculture in ammonia emissions and crop productivity in China. Environ Sci Technol. 2022;56(5):2977–89. https://doi.org/10.1021/acs.est.1c07518
  95. 95. Clover J. Food security in sub–Saharan Africa. Afr Secur Rev. 2003;12(1):5–15. https://doi.org/10.1080/10246029.2003.9627255
  96. 96. Sakthivel S, Adhisankaran K. Carbon sequestration. In: Emerging trends in agricultural practices. ND Global Publication House; 2023. p. 48-63
  97. 97. Khatri–Chhetri A, Aggarwal PK, Joshi PK, Vyas S. Farmers' prioritization of climate-smart agriculture (CSA) technologies. Agric Syst. 2017;151:184–91. https://doi.org/10.1016/j.agsy.2016.10.005
  98. 98. Shakoor A, Shahbaz M, Farooq TH, Sahar NE, Shahzad SM, Altaf MM, Ashraf M. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci Total Environ. 2021;750:142299. https://doi.org/10.1016/j.scitotenv.2020.142299
  99. 99. Rowntree JE, Stanley PL, Maciel IC, Thorbecke M, Rosenzweig ST, Hancock DW, et al. Ecosystem impacts and productive capacity of a multi-species pastured livestock system. Front Sustain Food Syst. 2020;4:544984. https://doi.org/10.3389/fsufs.2020.544984
  100. 100. Gao B, Huang T, Ju X, Gu B, Huang W, Xu L, et al. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Glob Chang Biol. 2018;24(12):5590–606. https://doi.org/10.1111/gcb.14425

Downloads

Download data is not yet available.