Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 2 (2025)

Physical seed treatment methods for enhancing pulse seed vigour and germination - A review

DOI
https://doi.org/10.14719/pst.6977
Submitted
30 December 2024
Published
11-05-2025 — Updated on 27-05-2025
Versions

Abstract

Pulses is the common term that refers to the edible seeds of the legume plant. Pulses belong to the family Fabaceae and include various crops like blackgram, green gram, peas, beans and lentils etc. They are cultivated primarily for human consumption, livestock forage and silage. Pulses are of great economic and environmental importance as they contribute to the soil ecosystem by fixing nitrogen and have high fibre and protein content. Pulses are considered as an essential source of plant-based protein. The primary disadvantage of pulse crops is their decreased productivity. The low productivity of pulse crops can be attributed to several factors. Amongst them, the hard seed coat is a significant factor. Cost-effective seed invigoration treatments are recommended to overcome the above problem in commercial seed production centres. Seed invigoration techniques are becoming more popular to increase the planting value of pulse crops and boost seed vigour. In this review, various physical treatments for pulse seeds, viz., Hot water treatment, scarification, magnetictreatment, plasma treatment and irradiation treatment, are discussed for the adoption of techniques to overcome the hardness of seed coat and boost productivity in pulse crop. Amongst all the treatments, plasma treatment is considered eco-friendly and induces germination by breaking dormancy associated with the seed coat of pulse crop.

References

  1. 1. Mukherjee AK, Naorem A, Udayana SK. Nutritional value of pulses and their importance in human life. Inno Farm. 2017;2(1):57–62.
  2. 2. Aladjadjiyan A. Effect of microwave irradiation on seeds of lentils (Lens culinaris). Romanian J Biophys. 2010;20(3):213–21.
  3. 3. Govindaraj M, Masilamani P, Albert VA, Bhaskaran M. Effect of physical seed treatment on yield and quality of crops: A review. Agri Rev. 2017;38(1):1–14. https://doi.org/10.18805/ag.v0iOF.7304
  4. 4. Murugesan P, Mathur R, Bijimol G, Kumar MR. Effect of extended dry heat treatment on germination and seedling growth in Oil palm (Elaeis guineensis) mother palms. J Plantation Crops. 2008;36(1):45–8.
  5. 5. Pretty JN, Noble AD, Bossio D, Dixon J, Hine RE, Penning de Vries FW, et al. Resource-conserving agriculture increases yields in developing countries. Environ Sci Technol. 2006; 1114–19. https://doi.org/10.1021/es062733a
  6. 6. Muniz M. Control of microorganisms associated with tomato seeds using thermotherapy. Revista. Brasileira-sementes. 2001;23(1):176–280.
  7. 7. Begum M, Lokesh S. Effect of hot water and ultraviolet radiation on the incidence of seedborne fungi of okra. Arch Phytopathol Plant Protect. 2012;45(2):126–32. https://doi.org/10.1080/03235408.2010.493745
  8. 8. Singh S, Singh HK. Bharat N. Hot Water seed treatment: A Review [Internet]. Capsicum. IntechOpen; 2020. Available from: http://dx.doi.org/10.5772/intechopen.91314
  9. 9. Bölek Y, Nas MN, Cokkizgin H. Hydropriming and hot water-induced heat shock increase cotton seed germination and seedling emergence at low temperature. Turkish J Agric For. 2013;37(3):300–6. https://doi.org/10.3906/tar-1203-22
  10. 10. Piramila B, Prabha A, Nandagopalan V, Stanley A. Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram. Int J Pharm Phytopharmacol Res. 2012;1:194–202.
  11. 11. Tamietti G. Seed treatment trials to control halo blight of bean. Informatore Fitopatol. 1982; 32 (6):47–50.
  12. 12. Grondeau C, Ladonne F, Fourmond A, Poutier F, Samson R. Attempt to eradicate Pseudomonas syringae pv. Pisi from pea seeds with heat treatments. Seed Sci Technol. 1992;20(3):515–25. https://doi.org/10.1079/cabicompendium.44988
  13. 13. Rani MAS. Influence of Pre-sowing seed treatments on the germination pattern of breaking seed dormancy in Macrotyloma uniflorum (Lam.) Verdc.(Horse Gram), Cicer arietinum (L.)(Chick Pea) and Vigna radiata (L.) Wilczek.,(green gram) Family-Fabaceae. Indian J Nat Sci. 2023;14:60472–77.
  14. 14. Eucharia EU. Germination potential and seedling establishment of pigeon pea (Cajanus cajan) as influenced by different pre-treatment techniques. Integr J Agri Food Res. 2018;3(1):27–35. https://doi.org/10.31018/jans.v8i1.770
  15. 15. Nandini R, Shripad K. Evaluation of hot water treatment on seed germination and seedling infection of artificially inoculated cowpea seeds by Xanthomonas axonopodis pv. vignicola. Int J Bioassays. 2015;4(8):4181–3.
  16. 16. Amri E. The effects of pre-sowing seed treatments on germination of snake bean (Swartzia madagascariensis): a reported medicinal plant. Res J Agri Biolog Sci.2010;6(4):557–61.
  17. 17. Okoh T, Okekporo ES, Onoja CE. Effects of pre-sowing treatments on seed germination and seedling growth of Glycine max (L.) Merrill. Int J Environ Agri Biotechnol. 2019;4(3):671–6. https://doi.org/10.22161/ijeab/4.3.12
  18. 18. Sharififar A, Nazari M, Asghari HR. Effect of ultrasonic waves on seed germination of Atriplex lentiformis, Cuminum cyminum and Zygophyllum eurypterum. J Appl Res Med Arom Plants. 2015;2(3):102–4. https://doi.org/10.1016/j.jarmap.2015.05.003
  19. 19. Kimura E, Islam M. Seed scarification methods and their use in forage legumes. Res J Seed Sci. 2012;5(2):38–50. https://doi.org/10.3923/rjss.2012.38.50
  20. 20. Baskin CC. Breaking physical dormancy in seeds: Focusing on the lens. New Phytologist. 2003:229–32. https://doi.org/10.1046/j.1469-8137.2003.00751.x
  21. 21. Han CT, Sung Y, Hsueh MT. The effect of scarification treatments and seed moisture content on the hard-seededness of 'Taitung No. 1' winged bean (Psophocarpus tetragonolobus) seeds. Hort Sci. 2022;57(9):1064–71. https://doi.org/10.21273/HORTSCI16683-22
  22. 22. Utami E, Santika E, Hidayat C. The mechanical and chemical scarification to break dormancy and increase the vigour of Sunan candlenut seed. IOP Earth and Environ Sci. 2021. https://doi.org/10.1088/1755-1315/694/1/012028
  23. 23. Adhithya G, Siddaraju R. Evaluation of hard seedness and methods to overcome in green gram. Mysore J Agri Sci. 2022;56(2):39–48.
  24. 24. Wang Y, Hanson J, Mariam YW. Effect of sulfuric acid pretreatment on breaking hard seed dormancy in diverse accessions of five wild Vigna species. Seed Sci Technol. 2007;35(3):550–59. https://doi.org/10.15258/sst.2007.35.3.03
  25. 25. Gangaraju N, Balakrishna P. Screening of black gram genotypes for hardseededness and breaking of hardseededness by using various seed treatment methods in black Gram (Vigna mungo L. Hepper). Mysore J Agric Sci. 2016; 50(2): 434–37.
  26. 26. Ardiarini N, Lase JA, Hidayat Y, Habeahan KB. The effect of seed scarification on the germination process and the growth of long bean (Vigna sinensis) sprout. EDP Sciences. 2021. https://doi.org/10.1051/e3sconf/202130601002
  27. 27. Lambat A, Lambat P, Babhulkar V, Gadewar R, Charjan S, Parate R. The effect of stratification and scarification on germinability of black gram seeds. IJRBAT. 2017;5:26–27.
  28. 28. Tyohemba S. The effects of hydrochloric acid, mechanical scarification and hot water on germination of Parkia biglobosa seeds (African Locust Bean). ScienceOpen Preprints. 2023. https://doi.org/10.14293/s2199-1006.1.sor-.pprbufb.v1
  29. 29. Urrútia G, Bonfill X. Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Med Clín. 2010;135(11):507–11.
  30. 30. Teixeira da Silva JA, Dobránszki J. Magnetic fields: how is plant growth and development impacted? Protoplasma. 2016;253(2):231–48. https://doi.org/10.1007/s00709-015-0820-7
  31. 31. Podle?na A, Bojarszczuk J, Podle?ny J. Effect of pre-sowing magnetic field treatment on some biochemical and physiological processes in faba bean (Vicia faba L. spp. Minor). J Plant GrowReg. 2019;38:1153–60. https://link.springer.com/article/10.1007/s00344-019-
  32. 09920-1
  33. 32. Vashisth A, Nagarajan S. Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics. 2008;29(7):571–78. https://doi.org/10.1002/bem.20426
  34. 33. Mridha N, Chattaraj S, Chakraborty D, Anand A, Aggarwal P, Nagarajan S. Pre?sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress. Bioelectromagnetics. 2016;37(6):400–18. https://doi.org/10.1002/bem.21994
  35. 34. Podle?ny J, Pietruszewski S, Podle?na A. Efficiency of the magnetic treatment of broad bean seeds cultivated under experimental plot conditions. Int Agrophys. 2004;18(1):65–71.
  36. 35. Shine M, Guruprasad K, Anand A. Enhancement of germination, growth and photosynthesis in soybean by pre?treatment of seeds with magnetic field. Bioelectromagnetics. 2011;32(6):474–84. https://doi.org/10.1002/bem.20656
  37. 36. Mahajan TS, Pandey OP. Magnetic-time model at off-season germination. Int Agrophys. 2014;28(1):57–62. https://doi.org/10.2478/intag-2013-0027
  38. 37. Iqbal M, Haq Z, Jamil Y, Ahmad M. Effect of presowing magnetic treatment on properties of pea. Int Agrophys. 2012;26(1). https://doi.org/10.2478/v10247-012-0004-z
  39. 38. Nisar K, Sangma K, Rani S. Effect of electric treatment on germination, seedling growth and water uptake in chickpea seed. African J Agronom. 2018;6(5):383–92.
  40. 39. Trivedi HJ, Patel KR, Joshi VS. Effect of magnetic treatment on seed germination of
  41. Mung Bean (Vigna radiata). J Adv Zool. 2024;45(2). https://doi.org/10.53555/jaz.v45i2.3840
  42. 40. Afrasiyab A, Zafar J, Muhmmad H. Effect of electric field on seed germination and growth parameters of chickpea Cicer arietinum L. Ukrainian J Ecol. 2020;10(4):12–16. https://doi.org/10.15421/2020_160
  43. 41. Sharma R, Pandey ST, Verma O. Response to pre-sowing seed treatment on germination indices, seeding growth and enzymatic activities of chickpea (Cicer arietinum L.) seed. Int J Ecol Environ Sci. 2021;3(1):405–10.
  44. 42. Reddy K, Reshma S, Jareena S, Nagaraju M. Exposure of greengram seeds (Vigna radiata) to static magnetic fields: effects on germination and ?-amylase activity. Res J Seed Sci. 2012 https://doi.org/10.3923/rjss.2012.
  45. 43. Luckey TD. Radiation hormesis: the good, the bad and the ugly. Dose Response. 2006;4(3):169–90. https://doi.org/10.2203/dose-response.06-102.Luckey
  46. 44. Amir K, Hussain S, Shuaib M, Hussain F, Urooj Z, Khan WM, et al. Effect of gamma irradiation on OKRA (Abelmoschus esculentus L.). Acta Ecol Sin. 2018;38(5):368–73. https://doi.org/10.1016/j.chnaes.2018.02.002
  47. 45. Hassoon WH, Dheyab NS, Abd Alsada AJ. Effect of different Gamma Rays doses on
  48. Seed Germination, Seedling parameters on local seed okra (Abelmoschus esculentus).
  49. JAEVS. 2024;8(1):84–92. https://doi.org/10.26389/ajsrp.w241023
  50. 46. Kondrateva N, Krasnolutskaya M, Dukhtanova N, Obolensky N. Effect of ultraviolet
  51. radiation the germination rate of tree seeds. IOP Earth Environ Sci; 2019. https://doi.org/10.1088/1755-1315/226/1/012049
  52. 47. Foroughbakhch Pournavab R, Bacópulos Mejía E, Benavides Mendoza A, Salas Cruz LR, Ngangyo Heya M. Ultraviolet radiation effect on seed germination and seedling growth of common species from Northeastern Mexico. Agronomy. 2019;9(6):269. https://doi.org/10.3390/agronomy9060269
  53. 48. Stefanello R, Barreto RAM, Müller GL, Rodrigues AHS, da Silva Garcia WJ, Dorneles LS. UV-B and UV-C radiation on the germination of soybean seeds. Rev Brase Ciênc Agrár. 2023;18(2):e2964-e. https://doi.org/10.5039/agraria.v18i2a2964
  54. 49. Kamel RM, El-Kholy MM, Tolba NM, Amer A, Eltarawy AM, Ali LM. Influence of germicidal ultraviolet radiation UV-C on the quality of Apiaceae spices seeds. Chem BiolTechnol Agri. 2022;9(1):89. https://doi.org/10.1186/s40538-022-00358-4
  55. 50. Neelamegam R, Sutha T. UV-C irradiation effect on seed germination, seedling growth and productivity of groundnut (Arachis hypogaea L.). Int J Curr Microbiol App Sci. 2015;4(8):430–43. https://doi.org/10.3390/agronomy9060269
  56. 51. Gandhi N, Rahul K, Chandana N, Madhuri B, Mahesh D. Impact of ultraviolet radiation on seed germination, growth and physiological response of Bengal gram (Cicer arietinum L.) and Horse gram (Macrotyloma uniflorum L.). J Biochem Res. 2019;2(1):19–34.
  57. 52. Lizana XC, Hess S, Calderini DF. Crop phenology modifies wheat responses to increased UV-B radiation. Agri Forest Meteorol. 2009;149(11):1964–74. https://doi.org/10.1017/S0021859607007447
  58. 53. Begum HA, Hamayun M, Shad N, Khan W, Ahmad J, Khan ME, et al . Effects of UV radiation on germination, growth, chlorophyll content and fresh and dry weights of Brassica rapa L. and Eruca sativa L. Sarhad J Agric. 2021;37:1016–24. https://doi.org/10.17582/journal.sja/2021/37.3.1016.1024
  59. 54. Khan T, RA RAL, Debnath B. Studies on the Effects of Ultraviolet Irradiation on Pea (Pisum sativum L.). Int J Genom Data Min. 2018;4:2577. https://doi.org/10.1111/j.1365-2486.1996.tb00084.x
  60. 55. Mariz-Ponte N, Mendes R, Sario S, Melo P, Santos C. Moderate UV-A supplementation benefits tomato seed and seedling invigouration: a contribution to the use of UV in seed technology. Sci Horti. 2018;235:357–66. https://doi.org/10.1016/j.scienta.2018.03.025
  61. 56. Lingakumar K, Kulandaivelu G. Differential responses of growth and photosynthesis in Cyamopsis tetragonoloba L. grown under ultraviolet-B and supplemental long-wavelength radiations. Photosynthetica. 1998;35:335–43. https://doi.org/10.1023/A:1006952032464
  62. 57. Hollósy F. Effects of ultraviolet radiation on plant cells. Micron. 2002;33(2):179–97. https://doi.org/10.1016/S0968-4328(01)00011-7
  63. 58. Peykarestan B, Seify M. UV irradiation effects on seed germination and growth, protein content, peroxidase and protease activity in red bean. Int J Sci Eng Investig. 2012;1(3):107–13.
  64. 59. Hameed A, Shah TM, Atta BM, Haq MA, Sayed H. Gamma irradiation effects on seed germination and growth, protein content, peroxidase and protease activity, lipid peroxidation in desi and kabuli chickpea. Pak J Bot. 2008;40(3):1033–41.
  65. 60. Atteh A, Adeyeye A. Effect of low gamma irradiation on the germination and morphological characteristics of broad beans (Vicia faba L.), mung beans (Vigna radiata L.) and peas (Pisum sativum L.) seedlings. Nat Resour. 2022;13(5):105–25. https://doi.org/10.4236/nr.2022.135008
  66. 61. Verma AK, Sharma S, Kakani RK, Meena RD, Choudhary S. Gamma radiation effects seed germination, plant growth and yield attributing characters of fennel (Foeniculum vulgare). 2017;6(5):2448-58. https://doi.org/10.20546/ijcmas.2017.605.274
  67. 62. Aney A. Effect of gamma irradiation on yield attributing characters in two varieties of pea (Pisum sativum L.). Int J Life Sci. 2013;1(4):241–7.
  68. 63. El-Bialee N, Nawito M. Germination scenario and growth analysis for irradiated cowpea.
  69. Plant Archives. 2020; 20:807–16.
  70. 64. Dhayal M, Lee SY, Park SU. Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. Vacuum. 2006;80(5):499–506. 10.1016/j.vacuum.2005.06.008
  71. 65. Attri P, Okumura T, Koga K, Shiratani M, Wang D, Takahashi K, et al. Outcomes of pulsed electric fields and nonthermal plasma treatments on seed germination and protein functions. Agronom. 2022;12(2):482. https://doi.org/10.3390/agronomy12020482
  72. 66. Volkov AG, Hairston JS, Marshall J, Bookal A, Dholichand A, Patel D. Plasma seeds: Cold plasma accelerates Phaseolus vulgaris seed imbibition, germination and speed of seedling growth. Plasma Med. 2020;10(3):139–58. https://doi.org/10.1615/PlasmaMed.2020036438
  73. 67. Ling L, Jiafeng J, Jiangang L, Minchong S, Xin H, Hanliang S, et al. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep. 2014;4(1):5859. https://doi.org/10.1088/1009-0630/16/1/12
  74. 68. Rüntzel CL, da Silva JR, da Silva BA, Moecke ES, Scusse VM. Effect of cold plasma on black beans (Phaseolus vulgaris L.), fungi inactivation and micro-structures stability. Emir J Food Agri. 2019;31(11):864–73. https://doi.org/10.9755/ejfa.2019.v31.i11.2029
  75. 69. Zhou R, Li J, Zhou R, Zhang X, Yang S. Atmospheric-pressure plasma treated water for seed germination and seedling growth of mung bean and its sterilization effect on mung bean sprouts. Innov Food Sci Emerg Technol. 2019;53:36–44. https://doi.org/10.1016/j.ifset.2018.08.006
  76. 70. Billah M, Sajib S, Roy N, Rashid M, Reza M, Hasan M, et al. Effects of DBD air plasma treatment on the enhancement of black gram (Vigna mungo) seed germination and growth. Arch Biochem Biophy. 2020;681:108253. https://doi.org/10.1016/j.abb.2020.108253
  77. 71. Mitra A, Li Y-F, Klämpfl TG, Shimizu T, Jeon J, Morfill GE, et al. Inactivation of surface-borne microorganisms and increased germination of seed specimens by cold atmospheric plasma. Food Bioprocess Technol. 2014;7:645–53. https://doi.org/10.1007/s11947-013-1126-4
  78. 72. Abeysingha DN, Dinesh S, Roopesh M, Warkentin TD, Thilakarathna MS. The effect of cold plasma seed treatments on nodulation and plant growth in pea (Pisum sativum) and lentil (Lens culinaris). Plasma Process Polym. 2024:e2400015. https://doi.org/10.1002/ppap.202400015
  79. 73. Sadhu S, Thirumdas R, Deshmukh R, Annapure U. Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiata). LWT. 2017;78:97–104. https://doi.org/10.1016/j.lwt.2016.12.026
  80. 74. Bormashenko E, Shapira Y, Grynyov R, Whyman G, Bormashenko Y, Drori E. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J Exp Bot. 2015;66(13):4013–21. https://doi.org/10.1093/jxb/erv206
  81. 75. Švubová R, Slováková ?, Holubová ?, Rov?anová D, Gálová E, Tomeková J. Evaluation of the impact of cold atmospheric pressure plasma on soybean seed germination. Plants. 2021;10(1):177. https://doi.org/10.3390/plants10010177

Downloads

Download data is not yet available.