Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

A review on adaptive water management for climate-resilient rice: Mitigating greenhouse gas (GHG) emissions

DOI
https://doi.org/10.14719/pst.6988
Submitted
31 December 2024
Published
23-05-2025
Versions

Abstract

Rice production is essential for global food security and socio-economic development, as it is a staple food for many people. However, low water-use efficiency/water productivity is noticed due to the high water input in the traditional transplanted rice ecosystem with stagnant water. On the other hand, climate change affects the hydrological cycle through precipitation, causing increasing water demand and major threats to the sustainability of rice cultivation and food security for the growing population. A significant need is to find out the balance between water conservation practices and their influence on greenhouse (GHG) emissions, mainly methane. This review gives insight into a comprehensive analysis of sustainable rice production systems that improve water productivity while reducing GHG emissions, a crucial gap in existing research. To overcome this, we evaluate key strategies like aerobic rice, alternate wetting and drying (AWD), direct-seeded rice (DSR), drip-irrigated rice, a system of rice intensification (SRI) and Internet of Things (IoT) based smart irrigation, highlighting the potential water use efficiency and reducing carbon footprints. Notably, we spotlight low methane-emitting rice cultivars and drought resistance right cultivars as promising low-emission rice cultivation solutions. Additionally, this article underscores the adoption of simulation models on water productivity and seasonal GHG emissions in rice. This review provides valuable insight for policymakers and researchers to optimize rice production under changing climatic conditions. This review underscores the need for effective water management practices to enhance food security while reducing environmental impacts.

References

  1. 1. FAOSTAT. Data, Crops and livestock products. Food and Agriculture Organization of the United Nations [internet]. Rome: FAO 2022 [cited 2025 Feb 20]. Available from: https://www.fao.org/faostat/en/#data/QCL
  2. 2. Dey A, Rashmi D. Rice and wheat production in India: An over-time study on growth and instability. J Pharmacogn Phytochem. 2020;9:158–61. https://doi.org/10.20546/ijcmas.2020.903.064
  3. 3. Habib-ur-Rahman M, Ahmad A, Raza A, Hasnain MU, Alharby HF, Alzahrani YM, et al. Impact of climate change on agricultural production: Issues, challenges and opportunities in Asia. Front Plant Sci. 2022;13:925548. https://doi.org/10.3389/fpls.2022.925548
  4. 4. IRRI. Sustaining food security beyond the year 2000: A Global Partnership for Rice Research; Manila (PH): International Rice Research Institute;1998.
  5. 5. Humphreys E, Thaman S, Prashar A, Gajri PR, Dhillon SS. Productivity, water use efficiency and hydrology of wheat on beds and flats in Punjab, India. CSIRO Land and Water. 2004. https://doi.org/10.13140/RG.2.1.3235.1841
  6. 6. Bijekar S, Padariya HD, Yadav VK, Gacem A, Hasan MA, Awwad NS, et al. The state of the art and emerging trends in wastewater treatment in developing nations. Water. 2022;14:2537. https://doi.org/10.3390/w14162537
  7. 7. Legg S. IPCC, 2021: Climate change 2021-the physical science basis. Interaction; 2021 1;49(4):44–45.
  8. 8. Mallappa, H. and Mahantesh S. Climate change and resilient food systems. Springer, Singapore; 2021.
  9. 9. Liu SW, Zheng YJ, Ma RY, Yu K, Han ZQ, Xiao SQ. Increased soil release of greenhouse gases shrinks the terrestrial carbon uptake enhancement under warming. Glob Change Biol. 2020;26:4601–13. https://doi.org/10.1111/gcb.15156
  10. 10. Qian H, Zhang N, Chen J, Chen C, Hungate BA, Ruan J, et al. Unexpected parabolic temperature dependency of CH4 emissions from rice paddies. Environ Sci Technol. 2022;56(8):4871–81. https://doi.org/10. 1021/acs.est.2c00738
  11. 11. Qian H, Huang S, Chen J, Wang L, Hungate BA, van Kessel C, et al . Lower‐than‐expected CH4 emissions from rice paddies with rising CO2 concentrations. Glob Change Biol. 2020;26(4):2368–76. https://doi.org/10.1111/gcb.14984
  12. 12. Qian H, Zhu X, Huang S, Linquist B, Kuzyakov Y, Wassmann R, et al. Greenhouse gas emissions and mitigation in rice agriculture. Nature Rev Earth Environ. 2023;4(10):716–32. https://doi.org/10.1038/s43017023-00482-1
  13. 13. Gao H, Tian H, Zhang Z, Xia X. Warming-induced greenhouse gas fluxes from global croplands modified by agricultural practices: A meta-analysis. Sci Total Environ. 2022;820:153288. https://doi.org/10.1016/j.scitotenv.
  14. 2022.153288
  15. 14. Bao T, Wang L, Huang Y, Li H, Qiu L, Liu J, et al. Elevated CO2 reduces CH4 emissions from rice paddies under in situ straw incorporation. Agri Ecosys Environ. 2024;370:109055. https://doi.org/10.1016/j.agee.2024.109055
  16. 15. Van Groenigen KJ, Van Kessel C, Hungate BA. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nature Clim Change. 2013;3(3):288–91. https://doi.org/10.1038/nclimate1712
  17. 16. Yuliawan T, Handoko I. The effect of temperature rise on rice crop yield in Indonesia uses the Shierary Rice model with a geographical information system (GIS) feature. Proc Environ Sci. 2016;33:214–20. https://doi.org/10.1016/
  18. j.proenv.2016.03.072
  19. 17. Bhuvaneswari K, Geethalakshmi V, Lakshmanan A, Anbhazhagan R, Sekhar DN. Climate change impact assessment and developing adaptation strategies for the rice crop in the western zone of Tamil Nadu. J Agrometeorol. 2014;16:38–43. https://doi.org/10.54386/jam.v16i1.1484
  20. 18. Silva DCS, Weatherhead EK, Knox JW, Rodriguez JA. Predicting the impacts of climate change: A case study of paddy irrigation water requirements in Sri Lanka. Agri Water Manag. 2007;93:19–29. https://doi.org/10.1016/j.agwat.
  21. 2007.06.003
  22. 19. Boonwichai S, Shrestha S, Babel MS, Weesakul S, Datta A. Climate change impacts on irrigation water requirement, crop water productivity and rice yield in the Songkhram River Basin, Thailand. J Cleaner Prod. 2018;198:1157–64. https://doi.org/10.1016/j.jclepro.2018.07.146
  23. 20. Rochette P, Liang C, Pelster D, Bergeron O, Lemke R, Kroebel R. Soil nitrous oxide emissions from agricultural soils in Canada: Exploring relationships with soil, crop and climatic variables. Agri Ecosys Environ. 2018;254:69–81. https://doi.org/10.1016/j.agee.2017.10.021
  24. 21. Li N, Wang J, Liu R, Hook M. Methane emission reduction in China's natural gas industry: Construction of technology inventory and selection of optimal technology programs. Sustain Prod Consump. 2024;44:39–54. https://doi.org/10.1016/j.spc.2023.12.002
  25. 22. Liu S, Zhang L, Liu Q, Zou J. Fe (III) fertilization mitigating net global warming potential and greenhouse gas intensity in paddy rice-wheat rotation systems in China. Environ Poll. 2012;164:73–80. https://doi.org/10.1016/j.
  26. envpol.2012.01.029
  27. 23. Jiao Y, Huang Y, Zong L, Zheng X, Sass RL. Effects of copper concentration on methane emission from rice soils. Chemosph. 2005;58(2):185–93. https://doi.org/10.1016/j.chemosphere.2004.03.005
  28. 24. Intergovernmental Panel on Climate Change IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA; 2013;659–740.
  29. 25. Sander BO, Samson M, Buresh RJ. Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma. 2014;355–62. https://doi.org/10.1016/j.geoderma.
  30. 2014.07.020
  31. 26. Wu L, Tang S, Hu R, Wang J, Duan P, Xu C, et al. Increased N2O emission due to paddy soil drainage is regulated by carbon and nitrogen availability. Geoderma. 2023;432:116422. https://doi.org/10.1016/j.geoderma.2023.116422
  32. 27. Green RF, Joy EJ, Harris F, Agrawal S, Aleksandrowicz L, Hillier J, et al. Greenhouse gas emissions and water footprints of typical dietary patterns in India. Sci Total Environ. 2018;643:1411–18. https://doi.org/10.1016/j.scitotenv.
  33. 2018.06.258
  34. 28. Vijayakumar S, Jinger D, Parthiban P, Lokesh S. Aerobic rice cultivation for enhanced water use efficiency. Indian Farm. 2018;68:3–6.
  35. 29. Shahane AA, Shivay YS, Prasanna R, Kumar D. Improving water and nutrient use efficiency in rice by changing crop establishment methods, application of microbial inoculations and Zn fertilization. Glob Chall. 2019;3:1800005. https://doi.org/10.1002/gch2.201800005
  36. 30. Grassi C, Bouman BAM, Castaneda AR, Manzelli M, Vecchio V. Aerobic rice: Crop performance and water use efficiency. J Agri Environ Int Develop. 2009;103:259–70. https://doi.org/10.12895/jaeid.20094.35
  37. 31. Geethalakshmi V, Ramesh T, Palamuthirsolai A, Lakshmanan A. Productivity and water usage of rice as influenced by different cultivation systems. Madras Agri J. 2009;96:349–52. https://doi.org/10.29321/MAJ.10.100505
  38. 32. Midya A. Present research priority on aerobic rice culture for sustainable rice production under the backdrop of shrinking water resource base: A review. Indian J Agri Res. 2025;59(3). https://doi.org/10.18805/IJARe.A-6262
  39. 33. Ramulu V, Reddy MD, Umadevi M. Evaluation of water-saving rice production systems. J Pharmacogn Phytochem. 2020;9:658–60. https://doi.org/10.22271/phyto.2020.v9.i2k.10927
  40. 34. Hussain S, Hussain S, Aslam Z, Rafiq M, Abbas A, Saqib M, et al. Impact of different water management regimes on the growth, productivity and resource use efficiency of dry direct-seeded rice in central Punjab, Pakistan. Agronom. 2021;11(6):1151. https://doi.org/10.3390/agronomy11061151
  41. 35. Basha JS, Sarma ASR. Yield and water use efficiency of rice (Oryza sativa L.) relative to scheduling of irrigations. Ann Plant Sci. 2017;6:155965. https://doi.org/10.21746/aps.2017.02.005
  42. 36. Liu H, Zhan J, Hussain S, Nie L. Grain yield and resource use efficiencies of upland and lowland rice cultivars under aerobic cultivation. Agronomy. 2019;9:591. https://doi.org/10.3390/agronomy9100591
  43. 37. Mandal KG, Kandu DK, Thakur AK, Kannan K, Brahmanad PS, Kumar A. Aerobic rice response to irrigation regimes and fertilizer nitrogen rates. J Food Agri Environ. 2013;11:1153–88. https://doi.org/10.1234/4.2013.4817
  44. 38.Kato Y, Okami M, Katsura K. Yield potential and water use efficiency of aerobic rice (Oryza sativa L.) in Japan. Field Crops Res. 2009;113:328–34. https://doi.org/10.1016/j.fcr.2009.06.010
  45. 39. Subramanian E, Martin GJ, Suburayalu E, Mohan R. Aerobic rice: water-saving rice production technology. Agri Water Manag. 2008;49:239–43.
  46. 40. Hang X, Danso F, Luo J, Liao D, Zhang J, Zhang J. Effects of water-saving irrigation on direct-seeding rice yield and greenhouse gas emissions in North China. Agriculture. 2022;12(7):937. https://doi.org/10.3390/agriculture12070937
  47. 41. Singh PK, Srivastava PC, Sangavi R, Gunjan P, Sharma V. Rice water management under drip irrigation: An effective option for high water productivity and efficient zinc applicability. Pantnagar J Res. 2019;17:19–25.
  48. 42. Ishfaq M, Akbar N, Anjum SA, Anwar M. Growth, yield and water productivity of dry direct-seeded rice and transplanted aromatic rice under different irrigation management regimes. J Integr Agri. 2020;19:2656–67. https://doi.org/10.1016/S2095-3119(19)62876-5
  49. 43. Gill MS, Kumar A, Kumar P. Growth and yield of rice (Oryza sativa L.) cultivars under various methods and times of sowing. Indian J Agronom. 2006;51:123–27. https://doi.org/10.59797/ija.v51i2.4987
  50. 44. Wassmann R, Vlek PL. Mitigating greenhouse gas emissions from tropical agriculture: scope and research priorities. Environ Dev Sustain. 2004;6:1–9. https://doi.org/10.1023/B:ENVI.0000003628.77914.09
  51. 45. Echegaray-Cabrera I, Cruz-Villacorta L, Ramos-Fernandez L, Bonilla-Cordova M, Heros-Aguilar E, Flores L. Effect of alternate wetting and drying on the emission of greenhouse gases from rice fields on the northern coast of Peru. Agronomy. 2024;14:248. https://doi.org/10.3390/agronomy14020248
  52. 46. Kishor M, Praveen V, Ramulu V, Kumar A, Devi MU. Standardization of the Alternate Wetting and Drying (AWD) method of water management in lowland rice (Oryza sativa L.). Int J Plant Prod. 2017;11(5):515–32. https://doi.org/10.
  53. 1002/ird.2179
  54. 47. Sathish A, Avil Kumar K, Raghu P, Uma M. Effect of different crop establishment methods and irrigation regimes on rice (Oryza sativa L.) yield and water use efficiency. Int J Curr Microbiol Appl Sci. 2017;6:90–5. https://doi.org/10.
  55. 1016/j.fcr.2014.06.001
  56. 48. Belder P, Bouman BAM, Spiertz JHJ, Guoan L, Quilang EJ. Water use of alternately submerged and non-submerged irrigated lowland rice. In: Bouman BAM, Hengsdijk H, Hardy B, Bindraban PS, Tuong TP, Ladha JK, editors. Water-Wise Rice Production. Los Baños(Philippines): International Rice Research Institute; 2003.
  57. 49. He G, Wang Z, Cui Z. Managing irrigation water for sustainable rice production in China. J Cleaner Prod. 2019;245:118928. https:// doi.org/10.1016/j.jclepro.2019.118928
  58. 50. Nizami A, Zulfiqar M, Ali J, Khan N, Sheikh I. Improving water productivity in rice - A response to climate change and water stress in Pakistan. Sarhad J Agri. 2020;36:383–88.https://doi.org/10.17582/journal.sja/2020/36.2.383.388
  59. 51. Hasan K, Abdullah AH, Bhattacharjee D, Afrad SI. Impact of alternate wetting and drying technique on rice production in the drought-prone areas of Bangladesh. Indian Res J Ext Edu. 2016;16:39–48.
  60. 52. Oo AZ, Sudo S, Inubushi K, Mano M, Yamamoto A, Ono K, et al. Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agri Ecosys Environ. 2018;252:148–54. https://doi.org/10.1016/j.agee.2017.10.014
  61. 53. Carrijo DR, Lundy ME, Linquist BA. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Res. 2017;203:173–80. https://doi.org/10.1016/j.fcr.2016.12.002
  62. 54. Pandey N, Verma AK, Tripathi RS. Response of hybrid rice to the scheduling of nitrogen and irrigation during the dry season. Oryza. 2010;47:34–37.
  63. 55. Katayanagi N, Furukawa Y, Fumoto T, Hosen Y. Validation of the DNDC-Rice model by using CH4 and N2O flux data from rice cultivated in pots under alternate wetting and drying irrigation management. Soil Sci Plant Nutr. 2012;58(3):360–72. https://doi.org/10.1080/00380768.2012.682955
  64. 56. Mboyerwa PA, Kibret K, Mtakwa P, Aschalew A. Greenhouse gas emissions in irrigated paddy rice as influenced by crop management practices and nitrogen fertilization rates in eastern Tanzania. Front Sustain Food Sys. 2022;6:868479. https://doi.org/10.3389/fsufs.2022.868479
  65. 57. Sriphirom P, Chidthaisong A, Yagi K, Tripetchkul S, Towprayoon S. Evaluation of biochar applications combined with alternate wetting and drying (AWD) water management in rice field as a methane mitigation option for farmers’ adoption. Soil Sci Plant Nutr. 2020;66:235–46. https://doi.org/10.1080/00380768.2019.1706431
  66. 58. Chidthaisong A, Cha N, Rossopa B, Buddaboon C, Kunuthai C, Sriphirom P, et al. Evaluating the effects of alternate wetting and drying (AWD) on methane and nitrous oxide emissions from a paddy field in Thailand. Soil Sci Plant Nutr. 2018;64:31–38. https://doi.org/10.1080/00380768.2017.1399044
  67. 59. Uphoff N, Randriamiharisoa R. Reducing water use in irrigated rice production with the Madagascar System of Rice Intensification (SRI). In: Bouman BAM, Hengsdijk H, Hardy B, Bindraban PS, Tuong TP, Ladha JK, editors. Water-Wise Rice Production. Los Banos, Philippines: International Rice Research Institute; 2002:200–03.
  68. 60. Materu ST, Shukla S, Sishodia RP, Tarimo A, Tumbo SD. Water use and rice productivity for irrigation management alternatives in Tanzania. Water. 2018;10:1018. https://doi.org/10.3390/w10081018
  69. 61. Vijayakumar M, Ramesh S, Chandrasekaran B, Thiyagarajan TM. Effect of system of rice intensification (SRI) practices on yield attributes, yield and water productivity of rice (Oryza sativa L.). Res J Agri Biol Sci. 2006;2(6):236–42.
  70. 62. Mishra JS, Poonia SP, Kumar R, Dubey R, Kumar V, Mondal S, et al. An impact of agronomic practices of sustainable rice-wheat crop intensification on food security, economic adaptability and environmental mitigation across eastern Indo-Gangetic Plains. Field Crops Res. 2021;267:108164. https://doi.org/10.1016/j.fcr.2021.108164
  71. 63. Jain N, Dubey R, Dubey DS, Singh J, Khanna M, Pathak H, et al. Mitigation of greenhouse gas emissions with a system of rice intensification in the Indo-Gangetic Plains. Paddy Water Environ. 2014;12:355–63. https://doi.org/
  72. 10.1007/s10333-013-0390-2
  73. 64. Hosseinpour S, Mousavi H. Climate-smart agriculture: the promise of system of rice intensification (SRI) for sustainable paddy production. agriRxiv. 2025:20250071256. https://doi.org/10.31220/agriRxiv.2025.00304
  74. 65. Soman P. Evaluation of the performance of aerobic rice using drip irrigation technology under tropical conditions. Int J Agri Sci. 2018;10(10):6040–43.
  75. 66. Singh M, Bhullar MS, Chauhan BS. Influence of tillage, cover cropping and herbicides on weeds and productivity of dry direct-seeded rice. Soil Till Res. 2015;147:39–49. https://doi.org/10.1016/j.still.2014.11.007
  76. 67. Padmanabhan S. Drip irrigation technology for rice cultivation for enhancing rice productivity and reducing water consumption. In: Proceedings of the World Irrigation Forum; 2019.
  77. 68. Natarajan SK, Duraisamy VK, Thiyagarajan G, Manikandan M. Evaluation of drip fertigation system for aerobic rice in western zone of Tamil Nadu. Int J Plant Soil Sci. 2020;32:41–47. https://doi.org/10.9734/ijpss/2020/v32i730303
  78. 69. Adekoya MA, Liu Z, Vered E. Agronomic and ecological evaluation on growing water-saving and drought-resistant rice (Oryza sativa L.) through drip irrigation. J Agri Sci. 2014;6(5):110–19. https://doi.org/10.5539/jas.v6n5p110
  79. 70. Kar I, Yadav S, Mishra A, Behera B, Khanda C, Kumar V, et al. Productivity trade-off with different water regimes and genotypes of rice under non-puddled conditions in Eastern India. Field Crops Res. 2018;222:218–29. https://doi.org/10.1016/j.fcr.2017.10.007
  80. 71. Singh R, Singh A, Kumar S, Rai AK, Rani S, Sharma DK, et al. Feasibility of mini-sprinkler irrigation system in direct seeded rice (Oryza sativa) in Indo-Gangetic plains of India. Indian J Agri Sci. 2020;90(10):1946–51. https://doi.org/10. 56093/ijas.v90i10.107970
  81. 72. Karim MR, Alam MM, Ladha JK, Islam MS, Islam MR. Effect of different irrigation and tillage methods on yield and resource use efficiency of boro rice (Oryza sativa). Bangladesh J Agri Res. 2014;39:151–63. https://doi.org/10.3329
  82. /bjar.v39i1.20165
  83. 73. Kahlown MA, Raoof A, Zubair M, Kemper WD. Water use efficiency and economic feasibility of growing rice and wheat with sprinkler irrigation in the Indus Basin of Pakistan. Agri Water Manag. 2007;87:292–98. https:// doi.org/10.1016/j.agwat.2006.07.011
  84. 74. Abioye EA, Hensel O, Esau TJ, Elijah O, Abidin MS, Ayobami AS, et al. Precision irrigation management using machine learning and digital farming solutions. Agri Eng. 2022;4(1):70–103. https://doi.org/10.3390/agriengineering
  85. 4010006
  86. 75. Abdikadir NM, Hassan AA, Abdullahi HO, Rashid RA. Smart irrigation system. Int J Electr Electron Eng. 2023;10(8):224–34. https://doi.org/10.14445/23488379 %2FIJEEE-V10I8P122
  87. 76. Giri MB, Pippal RS. Agricultural environmental sensing application using a wireless sensor network for automated drip irrigation. Int J Comput Sci Eng. 2016;4:133–37.
  88. 77. Gutierrez J, Villa-Medina JF, Nieto-Garibay A, Porta-Gandara MA. Automated irrigation system using a wireless sensor network and a GPRS module. IEEE Trans Instrum Meas. 2013;63:166–76. https://doi.org/10.1109/TIM.2013.
  89. 2276487
  90. 78. Nikolidakis SA, Kandris D, Vergados DD, Douligeris C. Energy-efficient automated control of irrigation in agriculture by using wireless sensor networks. Comput Electron Agri. 2015;113:154–63. https://doi.org/10.
  91. 1126/science.1082750
  92. 79. Mohapatra AG, Lenka SK. Neural network pattern classification and weather-dependent fuzzy logic model for irrigation control in WSN-based precision agriculture. Proc Comput Sci. 2016;78:499–506. https://doi.org/10.1016/
  93. j.procs.2016.02.094
  94. 80. Rahangadale V, Choudhary D. On a fuzzy logic-based model for irrigation controller using Penman-Monteith equation. Int J Comp Appl. 2011;22–25.
  95. 81. Nallani S, Hency VB. Low-power, cost-effective automatic irrigation system. Indian J Sci Technol. 2015;8(23):1. https://doi.org/10.17485/ijst/2015/v8i23/79973
  96. 82. Laphatphakkhanut R, Puttrawutichai S, Dechkrong P, Preuksakarn C, Wichaidist B, Vongphet J, et al. IoT-based smart crop-field monitoring of rice cultivation system for irrigation control and its effect on water footprint mitigation. Paddy Water Environ. 2021;19:699–707. https://doi.org/10.1007/s10333-021-00868-1
  97. 83. Zeng Y, Chen C, Lin G. Practical application of an intelligent irrigation system to rice paddies in Taiwan. Agri Water Manag. 2023;280:108216. https://doi.org/10.1016/j.agwat.2023.108216
  98. 84. Zia H, Rehman A, Harris NR, Fatima S, Khurram M. An experimental comparison of IOT-based and traditional irrigation scheduling on a flood-irrigated subtropical lemon farm. Sensors. 2021;21:4175. https://doi.org/10.3390/
  99. s21124175
  100. 85. Saravanakumar S, Kumar VD, Daisy IJ, Manimekalai V. AI-based automatic irrigation system using IoT. EasyChair. 2022;7930. https://doi.org/10.37896/sr10.6/025
  101. 86. Champness M, Vial L, Ballester C, Hornbuckle J. Evaluating the performance and opportunity cost of a smart-sensed automated irrigation system for water-saving rice cultivation in temperate Australia. Agri. 2023;13(4):903. https://doi.org/10.3390/agriculture13040903
  102. 87. Masseroni D, Moller P, Tyrell R, Romani M, Lasagna A, Sali G, et al. Evaluating the performance of the first automatic system for paddy irrigation in Europe. Agri Water Manag. 2018;201:58–69. https://doi.org/10.1016/
  103. j.agwat.2017.12.019
  104. 88. Binayao RP, Mantua PV, Namocatcat HR, Seroy JK, Sudaria PR, Gumonan KM,et al. Smart Water Irrigation for Rice Farming through the Internet of Things. Int J Computing Sci. 2024;8:2550–63. https://doi.org/10.48550/arXiv.
  105. 2402.07917
  106. 89. Rafique MA, Tay FS, Then YL. Design and development of a smart irrigation and water management system for conventional farming. J Physics. 2021;1844 (1):012009. https://doi.org/10.1088/1742-6596/1844/1/012009
  107. 90. Shufian A, Haider MR, Hasibuzzaman M. Results of a simulation to propose an automated irrigation & monitoring system in crop production using fast charging & solar charge controller. Cleaner Eng Technol. 2021;4:100165. https://doi.org/10.1016/j.clet.2021.100165
  108. 91. Sudharshan N, Karthik AK, Kiran JS, Geetha S. Renewable energy-based smart irrigation system. Procedia Comp Sci. 2019;165:615–23. https://doi.org/10.1016/j.procs.2020.01.055
  109. 92. Ferreira S, Sanchez JM, Goncalves JM. A remote-sensing-assisted estimation of water use in rice paddy fields: A study on Lis Valley, Portugal. Agronomy. 2023;13(5):1357. https://doi.org/10.3390/agronomy13051357
  110. 93. Yang Y, Zhou X, Yang Y, Bi S, Yang X, Liu D. Evaluating water-saving efficiency of plastic mulching in Northwest China using remote sensing and SEBAL. Agri Water Manag. 2018;209:240–48. https://doi.org/10.1016/j.agwat.
  111. 2018.07.011
  112. 94. Talpur Z, Zaidi AZ, Ahmed S, Mengistu TD, Choi SJ, Chung IM. Estimation of crop water productivity using GIS and remote sensing techniques. Sustainability. 2023;15:11154. https://doi.org/10.3390/su151411154
  113. 95. Hu J, Bettembourg M, Moreno S, Zhang A, Schnürer A, Sun C, et al. Characterisation of a low methane emission rice cultivar suitable for cultivation in high-latitude light and temperature conditions. Environ Sci Poll Res. 2023;30(40):92950–62. https://doi.org/10.1007/s11356-023-28985-w
  114. 96. Fernandez-Baca CP, Rivers AR, Kim W, Iwata R, McClung AM, Roberts DP, et al. Changes in rhizosphere soil microbial communities across plant developmental stages of high and low methane-emitting rice genotypes. Soil Biol Biochem. 2021;156:108233. https://doi.org/10.1016/j.soilbio.2021.108233
  115. 97. Gogoi N, Baruah KK, Gupta PK. Selection of rice genotypes for lower methane emission. Agron Sustain Dev. 2008;28:181–86. https://doi.org/10.1051/agro:2008005
  116. 98. FAO. FAO STAT - Food and Agriculture Organization. Rome, 2019. www.fao.org
  117. 99. Sobanaa M, Prathiviraj R, Selvin J, Prathaban M. A comprehensive review on methane’s dual role: effects in climate change and potential as a carbon–neutral energy source. Environ Sci Poll Res. 2024;31(7):10379–94. https://doi.org/
  118. 10.1007/s11356-023-30601-w
  119. 100. Luo LJ. Breeding for water-saving and drought-resistant rice (WDR) in China. J Exp Bot. 2010;61(13):3509–17. https://doi.org/10.1093/jxb/erq185
  120. 101. Luo LJ, Ying CS, Tang SX. Rice germplasm resources. Hubei Science and Technology Press (in Chinese); 2002. https://doi.org/10.1016/S1672-6308(08)60024-4
  121. 102. Luo L, Mei H, Yu X, Xia H, Chen L, Liu H, et al. Water-saving and drought-resistance rice: From the concept to practice and theory. Mol Breed. 2019;39(1):1–15. https://doi.org/10.1007/s11032-019-1057-5
  122. 103. Zhang X, Zhou S, Bi J, Sun H, Wang C, Zhang J. Drought-resistance rice variety with water-saving management reduces greenhouse gas emissions from paddies while maintaining rice yields. Agri Ecosys Environ. 2021;320:107592. https://doi.org/10.1016/j.agee.2021.107592
  123. 104. Xu Y, Ge J, Tian S, Li S, Nguy-Robertson AL, Zhan M, et al. Effects of water-saving irrigation practices and drought-resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Sci Total Environ. 2015;505:1043–52. https://doi.org/10.1016/j.scitotenv.2014.10.073
  124. 105. Bi J, Hou D, Zhang X, Tan J, Bi Q, Zhang K, et al. A novel water-saving and drought-resistance rice variety promotes phosphorus absorption through root secretion of organic acid compounds to stabilize yield under water-saving conditions. J Cleaner Prod. 2021; 315:127992. https://doi.org/10.1016/j.jclepro.2021.127992
  125. 106. Stern J, Wang Y, Gu B, Newman J. Distribution and turnover of carbon in natural and constructed wetlands in the Florida Everglades. Appl Geochem. 2007;22(9):1936–48. https://doi.org/10.1016/j.apgeochem.2007.04.007
  126. 107. Zhang W, Xu M, Wang X, Huang Q, Nie J, Li Z, et al. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. J Soils and Sediments. 2012;12:457–70. https://doi.org/10.1007/s11368-011-0467-8
  127. 108. Tong CL, Xiao HA, Tang GY, Wang HQ, Huang TP, Xia HA, et al. Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China. Soil Till Res. 2009;106:8–14. https://doi.org/10.1016/j.still.2009.09.003
  128. 109. Cong RH, Wang XJ, Xu MG, Zhang WJ, Xie LJ, Yang XY, et al. Dynamics of soil carbon to nitrogen ratio changes under long-term fertilizer addition in a wheat-corn double cropping system of China. Eur J Soil Sci. 2012; 63:341–50. https://doi.org/10.1111/j.1365-2389.2012.01448.x
  129. 110. Haque MM, Biswas JC, Maniruzaman M, Akhter S, Kabir MS. Carbon sequestration in paddy soil as influenced by organic and inorganic amendments. Carbon Manag. 2020;11(3):231–39. https://doi.org/10.1080/17583004.2020.
  130. 1738822
  131. 111. Mitra S, Wassmann R, Jain MC, Pathak H. Properties of rice soils affecting methane production potentials: 2. Differences in topsoil and subsoil. Nutr Cycling Agroecosyst. 2002;64:183–91. https://doi.org/10.1023/A:10211
  132. 75404418
  133. 112. Yan X, Zhou H, Zhu QH, Wang XF, Zhang YZ, Yu XC, et al. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Till Res. 2013;130:42–51. https://doi.org/10.1016/j.still.2013.
  134. 01.013
  135. 113. Yan XY, Gong W. The role of chemical and organic fertilizers on yield, yield variability and carbon sequestration- results of a 19-year experiment. Plant Soil. 2010;331:471–80. https://doi.org/10.1007/s11104-009-0268-7
  136. 114. Tang H, Qiu J, Van Ranst E, Li C. Estimations of soil organic carbon storage in cropland of China based on the DNDC model. Geoderma. 2006;134(1-2):200–06. https://doi.org/10.1016/j.geoderma.2005.10.005
  137. 115. Han B, Wang XK, Ou YZY. Saturation levels and carbon sequestration potentials of soil carbon pools in farmland ecosystems of China. J Ecol Rural Environ. 2005;21(4):6–11.
  138. 116. Chu G, Chen T, Chen S, Xu C, Wang D, Zhang X. The effect of alternate wetting and severe drying irrigation on grain yield and water use efficiency of Indica‐japonica hybrid rice (Oryza sativa L.). Food Energy Secur. 2018;7(2):00133. https://doi.org/10.1002/fes3.133
  139. 117. Anjum M, Nagabovanalli PB. Assessing the production of phytolith and phytolith-occluded carbon in above-ground biomass of intensively cultivated rice ecosystems in India. Carbon Manag. 2021;12(5):509–19. https://doi.org/10.1080/17583004.2021.1978552
  140. 118. Majumdar S, Prakash NB. An overview on the potential of silicon in promoting defence against biotic and abiotic stresses in sugarcane. J Soil Sci Plant Nutr. 2020;20(4):1969_98. https://doi.org/10.1007/s42729-020-00269-z
  141. 119. Sandhya K, Prakash NB, Meunier JD. Diatomaceous earth as a source of silicon on the growth and yield of rice in contrasted soils of Southern India. J Soil Sci Plant Nutr. 2018;18(2):344–60. https://doi.org/10.4067/S0718-95162018005001201
  142. 120. Meunier JD, Sandhya K, Prakash NB, Borschneck D, Dussouillez P. pH as a proxy for estimating plant-available Si? A case study in rice fields in Karnataka (South India). Plant Soil. 2018;432:143–55. https://doi.org/10.1007/s11104-018-3758-7
  143. 121. Sun X, Liu Q, Zhao G, Chen X, Tang T, Xiang Y. Comparison of phytolith-occluded carbon in 51 main cultivated rice (Oryza sativa) cultivars of China. RSC Adv. 2017;7(86):54726–33. https://doi.org/10.1039/C7RA10685H
  144. 122. Liu Q, Niu J, Sivakumar B, Ding R, Li S. Accessing future crop yield and crop water productivity over the Heihe River basin in northwest China under a changing climate. Geosci Lett. 2021;8(1):1–16. https://doi.org/10.1186/s40562-020-00172-6
  145. 123. Houma AA, Kamal MR, Mojid MA, Zawawi MAM, Rehan BM. Predicting climate change impact on water productivity of irrigated rice in Malaysia using the FAO-AquaCrop model. Appl Sci. 2021;11(23):11253. https://doi.org/10.3390/app112311253
  146. 124. Amarasingha RPRK, Suriyagoda LDB, Marambe B, Gaydon DS, Galagedara LW, Punyawardena R et al.Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka. Agri Water Manag. 2015; 160:132–43. https://doi.org/10.1016/j.agwat.2015.
  147. 07.001
  148. 125. Dass A, Nain AS, Sudhishri S, Chandra S. Simulation of maturity duration and productivity of two rice varieties under system of rice intensification using DSSAT v4.5/CERES Rice model. J Agrometeorology. 2012;14:26–30. https://doi.org/10.54386/jam.v14i1.1374
  149. 126. Gao S, Gu Q, Gong X, Li Y, Yan S, Li Y. Optimizing water-saving irrigation schemes for rice (Oryza sativa L.) using DSSAT-CERES-Rice model. Int J Agric Biol Engi. 2023;16:142–51. https:// doi.org/10.25165/j.ijabe.20231602.7361
  150. 127. Surendran U, Sushanth CM, George M, Joseph EJ. Modelling the impacts of the increase in temperature on irrigation water requirements in Palakkad district - a case study in humid tropical Kerala. J Water Clim Change. 2014;5:472–85. https:// doi.org/10.2166/wcc.2014.108
  151. 128. Saseendran SA, Singh PK, Rathore LS, Singh SV, Sinha SK. Effects of climate change on rice production in the tropical humid climate of Kerala, India. Clim Change. 2000;44:495–514. https://doi.org/10.1023/A:1005542414134
  152. 129. Naresh Kumar S, Aggarwal PK, Swaroopa Rani DN, Jain S, Saxena R, Chauhan N. Impact of climate change on crop productivity in Western Ghats, coastal and north-eastern regions of India. rr Sci. 2011;332–41. https://hdl.handle.net/10568/41981
  153. 130. Wang H, Tang S, Han S, Li M, Cheng W, Bu R, et al. Rational utilization of Chinese milk vetch improves soil fertility, rice production and fertilizer use efficiency in double-rice cropping system in East China. Soil Sci Plant Nutr. 2021;1–9. https://doi.org/10.1080/00380768.2021.1883997
  154. 131. Guo Y, Zhang G, Abdalla M, Kuhnert M, Bao H, Xu H, et al. Modelling methane emissions and grain yields for a double-rice system in Southern China with DAYCENT and DNDC models. Geoderma. 2023;431:116364. https://doi.org/10.1016/j.geoderma.2023.116364
  155. 132. Babu YJ, Li C, Frolking S, Nayak DR, Adhya TK. Field validation of the DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutr Cycl Agroecosys. 2006;74:157–74. https://doi.org/10.
  156. 1007/s10705-005-6111-5
  157. 133. Zhang Y, Wang YY, Su SL, Li C. Quantifying methane emissions from rice paddies in Northeast China by integrating remote sensing mapping with a biogeochemical model. Biogeosci. 2011;8:1225–35. https://doi.org/10.5194/bgd-8-385-2011

Downloads

Download data is not yet available.