Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 2 (2025)

Using machine learning models to forecast methane emissions from agriculture in India

DOI
https://doi.org/10.14719/pst.7010
Submitted
3 January 2025
Published
30-04-2025 — Updated on 24-06-2025
Versions

Abstract

Methane (CH4) is a potent and powerful greenhouse gas with significant warming potential. CH4 has approximately 84 times the global warming potential (GWP) of CO2 over a 20-year period and 25 times over a 100-year period. Methane persists in the atmosphere for approximately a decade before breaking down through oxidation processes. In order to forecast methane emissions from agricultural and related activities, this study applied an evaluation approach. This study analyzed annual data from 1990 to 2021, collected from the FAOSTAT website, using 7 machine learning models: Random Forest, LASSO, Gradient Boosting, AdaBoost, XGB, Ridge Regression and Linear Regression. The results indicate that the linear regression model outperformed the other models in predicting methane emissions. The results show that linear regression is more effective than the various machine learning algorithms. The linear regression model (R² = 0.98, RMSE = 1.95, MSE = 3.86 and MAE = 1.45) achieved the best performance among all models in terms of accuracy. The comparative study's findings should yield a highly accurate assessment of the methane emissions from agricultural areas and help with the creation of laws or other policies aimed at reducing those emissions. These findings can assist the Indian government in formulating effective policies to mitigate methane emissions while maintaining agricultural productivity. Our approach estimates methane emissions from agriculture in India with an R² value of 0.99, indicating high predictive accuracy.

References

  1. 1. Sharma SH, Sharma PU. Agricultural production, marketing and food security in India: A peep into progress. Productivity. 2017;58(2).
  2. 2. Chowdhury S, Rubi MA, Bijoy MHI. Application of artificial neural network for predicting agricultural methane and CO2 emissions in Bangladesh. In: 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE; 2021. p. 1–5. https://doi.org/10.1109/ICCCNT51525.2021.9580106
  3. 3. Press Information Bureau (PIB). Measures to reduce methane emissions (Internet). Ministry of Environment, Forest and Climate Change; 2023 (cited 2024 Apr 25). Available from: https://pib.gov.in/PressReleaseIframePage
  4. 4. Ganesan AL, Schwietzke S, Poulter B, Arnold T, Lan X, Rigby M, et al. Advancing scientific understanding of the global methane budget in support of the Paris Agreement. Glob Biogeochem Cycles. 2019;33(12):1475–512. https://doi.org/10.1029/2018GB006065
  5. 5. Global Carbon Project. The global methane budget 2000-2017 (Internet). 2020 Jul 15 (cited 2024 Apr 25). Available from: https://www.globalcarbonproject.org/
  6. 6. Dlugokencky E. Trends in atmospheric methane (Internet). NOAA/ESRL; 2020 (cited 2024 Apr 25). Available from: https://www.esrl.noaa.gov/gmd/ccgg/trends
  7. 7. Anika OC, Nnabuife SG, Bello A, Okoroafor RE, Kuang B, Villa R. Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualisation by 2050: A critical review. Carbon Capture Sci Technol. 2022;5:100072. https://doi.org/10.1016/j.ccst.2022.100072
  8. 8. Uyar GFU, Terzioglu M, Kayakus M, Tutcu B, Cosgun A, Tonguc G, et al. Estimation of methane gas production in Turkey using machine learning methods. Appl Sci. 2023;13(14):8442. https://doi.org/10.3390/app13148442
  9. 9. United Nations Framework Convention on Climate Change (UNFCCC). COP 27: 27th session of the Conference of the Parties (Internet). Government of the Arab Republic of Egypt; 2022 Nov 6-18 (cited 2024 Apr 20). Available from: https://unfccc.int/event/cop-27
  10. 10. FAOSTAT. Food and agriculture data: climate change; agrifood systems emissions, emissions total (Internet). Rome: Food and Agriculture Organization of the United Nations; 2023 (cited 2024 Apr 25). Available from: https://www.fao.org/faostat/en/#home
  11. 11. Climate Watch. GHG emissions (Internet). Washington, DC: World Resources Institute; 2024 (cited 2024 Apr 28). Available from: https://www.climatewatchdata.org/ghg-emissions
  12. 12. Ghaderzadeh M, Asadi F, Hosseini A, Bashash D, Abolghasemi H, Roshanpour A. Machine learning in detection and classification of leukemia using smear blood images: A systematic review. Sci Program. 2021;2021:9933481. https://doi.org/10.1155/2021/9933481
  13. 13. Kim SJ, Bae SJ, Jang MW. Linear regression machine learning algorithms for estimating reference evapotranspiration using limited climate data. Sustain. 2022;14(18):11674. https://doi.org/10.3390/su141811674
  14. 14. Mallikarjuna P, Jyothy SA, Sekhar Reddy KC. Daily reference evapotranspiration estimation using linear regression and ANN models. J Inst Eng (India) Ser A. 2012;93:215–21. https://doi.org/10.1007/s40030-013-0030-2
  15. 15. Mosre J, Suarez F. Actual evapotranspiration estimates in arid cold regions using machine learning algorithms with in situ and remote sensing data. Water. 2021;13(6):870. https://doi.org/10.3390/w13060870
  16. 16. Breiman L. Random Forest. Berkeley: University of California; 2001.
  17. 17. Athanasiadis I, Ioannides D. A machine learning approach using random forest and lasso to predict wine quality. Int J Sustain Agric Manag Inform. 2021;7(3):232–51. https://doi.org/10.1504/IJSAMI.2021.118129
  18. 18. Vinci A, Zoli L, Sciti D, Melandri C, Guicciardi S. Understanding the mechanical properties of novel UHTCMCs through random forest and regression tree analysis. Mater Des. 2018;145:97–107.https://doi.org/10.1016/j.matdes.2018.02.061
  19. 19. Jaiswal JK, Samikannu R. Application of random forest algorithm on feature subset selection and classification and regression. In: 2017 World Congress on Computing and Communication Technologies (WCCCT). IEEE;2017. p. 65–68. https://doi.org/10.1109/WCCCT.2016.25
  20. 20. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). New York, NY, USA; 2016. p. 785–94. https://doi.org/10.1145/2939672.2939785
  21. 21. Upadhyay D, Manero J, Zaman M, Sampalli S. Gradient boosting feature selection with machine learning classifiers for intrusion detection on power grids. IEEE Trans Netw Serv Manag. 2020;18(1):1104–16. https://doi.org/10.1109/TNSM.2020.3032618
  22. 22. Osman AIA, Ahmed AN, Chow MF, Huang YF, El-Shafie A. Extreme gradient boosting (XGBoost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Eng J. 2021;12(2):1545–56. https://doi.org/10.1016/j.asej.2020.11.011
  23. 23. Xv Y, Sun Y, Zhang Y. Prediction method for high-speed laser cladding coating quality based on random forest and AdaBoost regression analysis. Materials. 2024;17(6):1266. https://doi.org/10.3390/ma17061266
  24. 24. Tang J, Henderson A, Gardner P. Exploring AdaBoost and Random Forests machine learning approaches for infrared pathology on unbalanced data sets. Analyst. 2021;146(19):5880–91. https://doi.org/10.1039/D0AN02155E
  25. 25. Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970;12(1):55–67. https://doi.org/10.1080/00401706.1970.10488634
  26. 26. Aziz S, Chowdhury SA. Analysis of agricultural greenhouse gas emissions using the STIRPAT model: A case study of Bangladesh. Environ Dev Sustain. 2023;25(5):3945–65. https://doi.org/10.1007/s10668-022-02224-7
  27. 27. Wang S, Chen Y, Cui Z, Lin L, Zong Y. Diabetes risk analysis based on machine learning LASSO regression model. J Theory Pract Eng Sci. 2024;4(1):58–64.
  28. 28. Picard RP, Cook RD. Cross-validation of regression models. J Am Stat Assoc. 1984;79:575–83. https://doi.org/10.1080/01621459.1984.10478083
  29. 29. Di Bucchianico A. Coefficient of determination (R²). In: Encyclopedia of Statistics in Quality and Reliability. Hoboken, NJ, USA: Wiley Online Library; 2008.
  30. 30. Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geosci Model Dev. 2014;7:1247–50. https://doi.org/10.5194/gmd-7-1247-2014
  31. 31. Tuchler M, Singer A, Koetter R. Minimum mean squared error equalization using a priori information. IEEE Trans Signal Process. 2002; 50:673–83. https://doi.org/10.1109/78.984761
  32. 32. Ritchie H, Rosado P, Roser M. CO₂ and Greenhouse Gas Emissions. OurWorldinData.org (Internet). 2023 (cited 2024 Apr 20). Available from: https://ourworldindata.org/co2-and-greenhouse-gas-emissions
  33. 33. Jones MW, Peters GP, Gasser T, Andrew RM, Schwingshackl C, Gutschow J, et al. National contributions to climate change due to historical emissions of carbon dioxide, methane and nitrous oxide since 1850. Sci Data. 2023;10(1):155. https://doi.org/10.1038/s41597-023-02041-1

Downloads

Download data is not yet available.