Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Role of brassinolide in enhancing plant tolerance to salinity stress

DOI
https://doi.org/10.14719/pst.7032
Submitted
2 January 2025
Published
27-11-2025

Abstract

Salinity stress is a major constraint to global agriculture, reducing crop yields, degrading arable land and causing economic losses. In many regions, it is intensified by factors such as seawater intrusion, poor irrigation practices and climate-related changes in water availability. While mild salinity may not severely hinder growth, high salinity disrupts ion homeostasis, induces oxidative stress and impairs physiological processes including water and nutrient transport, leading to stunted growth and reduced biomass. Brassinolide (BL), a naturally occurring plant steroid hormone, plays a pivotal role in mitigating salinity stress by regulating ion balance, enhancing antioxidant defense systems, modulating stress-responsive gene expression (e.g., ion transporters, antioxidant enzymes) and promoting growth and development. Its exogenous application through foliar sprays, seed priming or soil treatments has shown promise in improving salt tolerance. This review outlines the mechanisms of salinity stress in plants and highlights the role of BL in alleviating its effects, with emphasis on signalling pathways, ion homeostasis, regulation of Na/H antiporters and reactive oxygen species (ROS) scavenging.

References

  1. 1. Bashir RN, Bajwa IS, Abbas MZ, Rehman A, Saba T, Bahaj SA, Kolivand H. Internet of things (IoT) assisted soil salinity mapping at irrigation schema level. Applied Water Sci 2022;12(5):105. https://doi.org/10.1007/s13201-022-01619-1
  2. 2. Hopmans JW, Qureshi AS, Kisekka I, Munns R, Grattan SR, Rengasamy P, et al. Critical knowledge gaps and research priorities in global soil salinity. Adv Agro. 2021;169:1-91. https://doi.org/10.1016/bs.agron.2021.03.001
  3. 3. Isayenkov SV, Maathuis FJ. Plant salinity stress: many unanswered questions remain. Front in Plant Sci. 2019;10:80. https://doi.org/10.3389/fpls.2019.00080
  4. 4. Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK. Additive effects of Na+ and Cl–ions on barley growth under salinity stress. J Exp Botany. 2011;62:2189-203. https://doi.org/10.1093/jxb/erq422
  5. 5. Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA. Plant responses to salt stress: adaptive mechanisms. Agronomy. 2017;7:18. https://doi.org/10.3390/agronomy7010018
  6. 6. Li S, Zheng H, Lin L, Wang F, Sui N. Roles of brassinosteroids in plant growth and abiotic stress response. Plant Growth Reg. 2021;93:29-38. https://doi.org/10.1007/s10725-020-00672-7https://doi.org/10.1007/s10725-020-00684-3
  7. 7. Rao SS, Vardhini BV, Sujatha E, Anuradha S. Brassinosteroids–a new class of phytohormones. Curr Sci. 2002:1239-45. https://www.jstor.org/stable/24107046
  8. 8. Li Z, He Y. Roles of brassinosteroids in plant reproduction. Int J Mole Sci. 2020;21:872. https://doi.org/10.3390/ijms21030872
  9. 9. Manghwar H, Hussain A, Ali Q, Liu F. Brassinosteroids (BRs) role in plant development and coping with different stresses. Int J Mole Sci. 2022;23:1012. https://doi.org/10.3390/ijms23031012
  10. 10. Bajguz A, Piotrowska-Niczyporuk A. Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Phys Biochem. 2013;71:290-97. https://doi.org/10.1016/j.plaphy.2013.08.003
  11. 11. Ali F, Qanmber G, Li F, Wang Z. Updated role of ABA in seed maturation, dormancy and germination. J Adv Res. 2022a;35:199-214. https://doi.org/10.1016/j.jare.2021.03.011
  12. 12. Kim SY, Warpeha KM, Huber SC. The brassinosteroid receptor kinase, BRI1, plays a role in seed germination and the release of dormancy by cold stratification. J Plant Phys. 2019;241:153031.https://doi.org/10.1016/j.jplph.2019.153031
  13. 13. Tepkaew T, Khamsuk O, Chumpookam J, Sonjaroon W, Jutamanee K. Exogenous brassinosteroids regulate mango fruit set through inflorescence development and pollen fertility. Horti Sci Techno. 2022;40:481-95.https://doi.org/10.7235/HORT.20220043
  14. 14. Kovtun IS, Kukharenko NE, Kusnetsov VV, Khripach VA, Efimova MV. Effect of lactone-and ketone-containing brassinosteroids on photosynthetic activity of barley leaves during aging. Russian J Plant Phys. 2021;68:440-50. https://doi.org/10.1134/S1021443721030080
  15. 15. Kim EJ, Russinova E. Brassinosteroid signalling. Curr Bio. 2020;30:R294-98. https://doi.org/10.1016/j.cub.2020.02.011
  16. 16. Ali MM, Anwar R, Malik AU, Khan AS, Ahmad S, Hussain Z, et al. Plant growth and fruit quality response of strawberry is improved after exogenous application of 24-epibrassinolide. J Plant Growth Reg. 2022b;41:1786-99. https://doi.org/10.1007/s00344-021-10422-2
  17. 17. Khatoon F, Kundu M, Mir H, Nahakpam S. Efficacy of foliar feeding of brassinosteroid to improve growth, yield and fruit quality of strawberry (Fragaria× ananassa Duch.) grown under subtropical plain. Commun Soil Sci Plant Analy. 2021;52:803-14. https://doi.org/10.1080/00103624.2020.1869765
  18. 18. Corwin DL, Yemoto K. Salinity: Electrical conductivity and total dissolved solids. Soil Sci Soc America J. 2020;84(5):1442-61. https://doi.org/10.1002/saj2.20154
  19. 19. Inda AZ. Status report on hyppology og.
  20. 20. Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S, Rossi L, et al. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agro. 2020;10:938. https://doi.org/10.3390/agronomy10070938
  21. 21. Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 2021; 22(9): 4642. https://doi.org/10.3390/ijms22094642
  22. 22. Tammam AA, Rabei AMSM, Pessarakli M, El-Aggan WH. Vermicompost and its role in alleviation of salt stress in plants–I. Impact of vermicompost on growth and nutrient uptake of salt-stressed plants. J Plant Nutr. 2023;46:1446-57. https://doi.org/10.1080/01904167.2022.2072741
  23. 23. Hussain S, Shaukat M, Ashraf M, Zhu C, Jin Q, Zhang J. Salinity stress in arid and semi-arid climates: Effects and management in field crops. Climate Change Agri. 2019;13:201-26. https://doi.org/10.5772/intechopen.78427https://doi.org/10.5772/intechopen.87982
  24. 24. Amin I, Rasool S, Mir MA, Wani W, Masoodi KZ, Ahmad P. Ion homeostasis for salinity tolerance in plants: A molecular approach. Phys Plantarum. 2021;171:578-94. https://doi.org/10.1111/ppl.13185
  25. 25. Almeida DM, Oliveira MM, Saibo NJ. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mole Bio. 2017;40:326-45. https://doi.org/10.1590/1678-4685-gmb-2016-0106
  26. 26. Yildiz M, Poyraz İ, Çavdar A, Özgen Y, Beyaz R. Plant responses to salt stress. IntechOpen; 2020. https://doi.org/10.5772/intechopen.93920
  27. 27. de Oliveira AB, Alencar NL, Gomes-Filho E. Comparison between the water and salt stress effects on plant growth and development. In: Sener A, editor. Responses of Organisms to Water Stress. 2013;4:67-94. https://doi.org/10.5772/54223
  28. 28. Oh MH, Honey SH, Tax FE. The control of cell expansion, cell division and vascular development by brassinosteroids: a historical perspective. Int J Mole Sci. 2020;21:1743. https://doi.org/10.3390/ijms21051743
  29. 29. Soares TF, dos Santos Dias DC, Oliveira AM, Ribeiro DM, dos Santos Dias LA. Exogenous brassinosteroids increase lead stress tolerance in seed germination and seedling growth of Brassica juncea L. Ecotoxi Environ Safety. 2020;193:110296. https://doi.org/10.1016/j.ecoenv.2020.110296
  30. 30. Li Y, Wu Y, Liao W, Hu L, Dawuda MM, Jin X, et al. Nitric oxide is involved in the brassinolide-induced adventitious root development in cucumber. BMC Plant Biology. 2020;20:1-2. https://doi.org/10.1186/s12870-023-04695-w
  31. 31. Khatoon F, Kundu M, Mir H, Nandita K. Exogenous brassinolide application improves growth, yield and quality of strawberry grown in the subtropics. Erwerbs-Obstbau. 2023;65:2271-79. https://doi.org/10.1007/s10341-023-00981-x
  32. 32. Zhuang Y, Lian W, Tang X, Qi G, Wang D, Chai G, Zhou G. MYB42 inhibits hypocotyl cell elongation by coordinating brassinosteroid homeostasis and signalling in Arabidopsis thaliana. Annals of Botany. 2022;129:403-13. https://doi.org/10.1093/aob/mcab152
  33. 33. Castorina G, Consonni G. The role of brassinosteroids in controlling plant height in Poaceae: a genetic perspective. Int J Mole Sci. 2020;21:1191. https://doi.org/10.3390/ijms21041191
  34. 34. Zhu J, Liu X, Huang W, An R, Xu X, Li P. 2, 4-Epibrassinolide delays leaf senescence in Pak choi (Brassica rapa subsp. chinensis) by regulating its chlorophyll metabolic pathway and endogenous hormones content. Gene. 2023;877:147531. https://doi.org/10.1016/j.gene.2023.147531
  35. 35. Shah SH, Parrey ZA, Islam S, Mohammad F, Alamri S, Kalaji HM. Epibrassinolide application improves Brassica juncea L. performance by augmenting gas exchange markers, stomatal behavior, cellular viability, enzymatic activities and yield attributes. South African J Botany. 2023;162:531-44. https://doi.org/10.1016/j.sajb.2023.09.045
  36. 36. Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y, et al. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. The Plant Cell. 2014;26:4376-93. https://doi.org/10.1105/tpc.114.132092
  37. 37. Nemhauser JL, Mockler TC, Chory J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biology. 2004;2:e258. https://doi.org/10.1046/j.1365-313x.2000.00915.x
  38. 38. Hu Y, Bao F, Li J. Promotive effect of brassinosteroids on cell division involves a distinct CycD3‐induction pathway in Arabidopsis. The Plant J 2000;24(5):693-701. https://doi.org/10.1046/j.1365-313x.2000.00915.x
  39. 39. Neha, Twinkle, Mohapatra S, Sirhindi G, Dogra V. Seed priming with brassinolides improves growth and reinforces antioxidative defenses under normal and heat stress conditions in seedlings of Brassica juncea. Phy Plantarum. 2022;174:e13814. https://doi.org/10.1111/ppl.13814
  40. 40. Liu L, Chen G, Li S, Gu Y, Lu L, Qanmber G, et al. A brassinosteroid transcriptional regulatory network participates in regulating fiber elongation in cotton. Plant Physiology. 2023;191:1985-2000. https://doi.org/10.1093/plphys/kiac590
  41. 41. Huang S, Zheng C, Zhao Y, Li Q, Liu J, Deng R, et al. RNA interference knockdown of the brassinosteroid receptor BRI1 in potato (Solanum tuberosum L.) reveals novel functions for brassinosteroid signaling in controlling tuberization. Scientia Horticulturae. 2021;290:110516. https://doi.org/10.1016/j.scienta.2021.110516
  42. 42. Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ. A role of brassinosteroids in early fruit development in cucumber. J Exp Botany. 2008;59:2299-308. https://doi.org/10.1093/jxb/ern093
  43. 43. Bai C, Zheng Y, Watkins CB, Fu A, Ma L, Gao H, et al. Revealing the specific regulations of brassinolide on tomato fruit chilling injury by integrated multi-omics. Front Nutr. 2021;8:769715. https://doi.org/10.3389/fnut.2021.769715
  44. 44. Ali SS, Kumar GS, Khan M, Doohan FM. Brassinosteroid enhances resistance to fusarium diseases of barley. Phytopathology. 2013;103:1260-67. https://doi.org/10.1094/PHYTO-05-13-0111-R
  45. 45. Kim TW, Guan S, Burlingame AL, Wang ZY. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Molecular Cell. 2011;43:561-71. https://doi.org/10.1016/j.molcel.2011.05.037
  46. 46. Wang ZY, Wang Q, Chong K, Wang F, Wang L, Bai M, Jia C. The brassinosteroid signal transduction pathway. Cell Research. 2006;16:427-34. https://doi.org/10.1038/sj.cr.7310054
  47. 47. Santner A, Estelle M. Recent advances and emerging trends in plant hormone signalling. Nature. 2009;459:1071-78. https://doi.org/10.1038/nature08122
  48. 48. Mu DW, Feng NJ, Zheng DF, Zhou H, Liu L, Chen GJ, Mu B. Physiological mechanism of exogenous brassinolide alleviating salt stress injury in rice seedlings. Sci Reports. 2022;12:20439. https://doi.org/10.1038/s41598-022-24747-9
  49. 49. Wang X, Chai J, Liu W, Zhu X, Liu H, Wei X. Promotion of Ca2+ accumulation in roots by exogenous brassinosteroids as a key mechanism for their enhancement of plant salt tolerance: A meta-analysis and systematic review. Int J Mole Sci. 2023;24:16123. https://doi.org/10.3390/ijms242216123
  50. 50. Mardinata Z, Edy ST, Ulpah S. Biochemical responses and leaf gas exchange of fig (Ficus carica L.) to water stress, short-term elevated CO2 levels and brassinolide application. Horticulturae. 2021;7:73. https://doi.org/10.3390/horticulturae7040073
  51. 51. Ahanger MA, Mir RA, Alyemeni MN, Ahmad P. Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Phys Biochem. 2020;147:31-42. https://doi.org/10.1016/j.plaphy.2019.12.007
  52. 52. Otie V, Udo I, Shao Y, Itam MO, Okamoto H, An P, Eneji EA. Salinity effects on morpho-physiological and yield traits of soybean (Glycine max L.) as mediated by foliar spray with brassinolide. Plants. 2021;10:541. https://doi.org/10.3390/plants10030541
  53. 53. Gupta P, Seth CS. 24-epibrassinolide regulates functional components of nitric oxide signalling and antioxidant defense pathways to alleviate salinity stress in Brassica juncea L. cv. Varuna. J Plant Growth Reg. 2023;42:4207-22. https://doi.org/10.1007/s00344-022-10884-y
  54. 54. Wang S, Liu D, Jin T, Du J, Tian A, Huang Q, et al. Manipulation of brassinosteroid signaling via overexpression of its major receptor SlBRI1 regulates salt tolerance in tomato. Scientia Horticulturae. 2023;322:112457. https://doi.org/10.1016/j.scienta.2023.112457
  55. 55. Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A. Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Botany. 2010;69:105-12. https://doi.org/10.1016/j.envexpbot.2010.03.004
  56. 56. Rattan A, Kapoor D, Kapoor N, Bhardwaj R, Sharma A. Brassinosteroids regulate functional components of antioxidative defense system in salt stressed maize seedlings. J Plant Growth Reg. 2020;39:1465-75. https://doi.org/10.1007/s00344-020-10097-1
  57. 57. Liaqat S, Umar S, Saffeullah P, Iqbal N, Siddiqi TO, Khan MI. Protective effect of 24-epibrassinolide on barley plants growing under combined stress of salinity and potassium deficiency. J Plant Growth Reg. 2020;39:1543-58. https://doi.org/10.1007/s00344-020-10163-8
  58. 58. Soliman M, Elkelish A, Souad T, Alhaithloul H, Farooq M. Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean. Phys Mole Bio Plants. 2020;26:501-11. https://doi.org/10.1007/s12298-020-00765-7
  59. 59. Su Q, Zheng X, Tian Y, Wang C. Exogenous brassinolide alleviates salt stress in Malus hupehensis Rehd. by regulating the transcription of NHX-Type Na+ (K+)/H+ antiporters. Front Plant Sci. 2020;11:38. https://doi.org/10.3389/fpls.2020.00038
  60. 60. Li W, Sun J, Zhang X, Ahmad N, Hou L, Zhao C, et al. The mechanisms underlying salt resistance mediated by exogenous application of 24-epibrassinolide in peanut. Int J Mole Sci. 2022;23:6376. https://doi.org/10.3390/ijms23126376
  61. 61. Groszyk J, Szechyńska-Hebda M. Effects of 24-epibrassinolide, bikinin and brassinazole on barley growth under salinity stress are genotype-and dose-dependent. Agro. 2021;11:259. https://doi.org/10.3390/agronomy11020259
  62. 62. Basu S, Kumar A, Benazir I, Kumar G. Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants. Physiologia Plantarum. 2021;171:502-19. https://doi.org/10.1111/ppl.13112
  63. 63. El-Banna MF, Al-Huqail AA, Farouk S, Belal BE, El-Kenawy MA, Abd El-Khalek AF. Morpho-physiological and anatomical alterations of salt-affected thompson seedless grapevine (Vitis vinifera L.) to brassinolide spraying. Horticulturae. 2022;8:568. https://doi.org/10.3390/horticulturae8070568
  64. 64. Chourasia KN, Lal MK, Tiwari RK, Dev D, Kardile HB, Patil VU, et al. Salinity stress in potato: Understanding physiological, biochemical and molecular responses. Life. 2021;11:545. https://doi.org/10.3390/life11060545
  65. 65. Yu B, Liu N, Tang S, Qin T, Huang J. Roles of glutamate receptor-like channels (GLRs) in plant growth and response to environmental stimuli. Plants. 2022;11:3450. https://doi.org/10.3390/plants11243450
  66. 66. Saraiva MP, Maia CF, Batista BL, Lobato AD. Ionic homeostasis and redox metabolism upregulated by 24‐epibrassinolide are crucial for mitigating nickel excess in soybean plants, enhancing photosystem II efficiency and biomass. Plant Biology. 2023;25:343-55. https://doi.org/10.1111/plb.13496
  67. 67. Kumari S, Chhillar H, Chopra P, Khanna RR, Khan MI. Potassium: A track to develop salinity tolerant plants. Plant Phys Biochem. 2021;167:1011-23. https://doi.org/10.1016/j.plaphy.2021.09.031
  68. 68. Deng J, Kong L, Zhu Y, Pei D, Chen X, Wang Y, et al. BAK1 plays contrasting roles in regulating abscisic acid-induced stomatal closure and abscisic acid-inhibited primary root growth in Arabidopsis. J Inte Plant Bio. 2022;64:1264-80. https://doi.org/10.1111/jipb.13257
  69. 69. Zhong W, Xie C, Hu D, Pu S, Xiong X, Ma J, et al. Effect of 24-epibrassinolide on reactive oxygen species and antioxidative defense systems in tall fescue plants under lead stress. Ecotoxi Environ Safety. 2020;187:109831. https://doi.org/10.1016/j.ecoenv.2019.109831
  70. 70. Guo C, Chen Y, Wang M, Du Y, Wu D, Chu J, Yao X. Exogenous brassinolide improves the antioxidant capacity of Pinellia ternata by enhancing the enzymatic and nonenzymatic defense systems under non-stress conditions. Front Plant Sci. 2022;13:917301. https://doi.org/10.3389/fpls.2022.917301
  71. 71. Shah AA, Khan WU, Yasin NA, Akram W, Ahmad A, Abbas M, et al. Butanolide alleviated cadmium stress by improving plant growth, photosynthetic parameters and antioxidant defense system of Brassica oleracea. Chemosphere. 2020;261:127728. https://doi.org/10.1016/j.chemosphere.2020.127728
  72. 72. Guo J, Dong X, Han G, Wang B. Salt-enhanced reproductive development of Suaeda salsa L. coincided with ion transporter gene upregulation in flowers and increased pollen K+ content. Front Plant Sci. 2019;10:333. https://doi.org/10.3389/fpls.2019.00333
  73. 73. Hu D, Wei L, Liao W. Brassinosteroids in plants: crosstalk with small-molecule compounds. Biomolecules. 2021;11:1800. https://doi.org/10.3390/biom11121800
  74. 74. Chen X, Xue H, Zhu L, Wang H, Long H, Zhao J, et al. ERF49 mediates brassinosteroid regulation of heat stress tolerance in Arabidopsis thaliana. BMC biology. 2022;20:254. https://doi.org/10.1186/s12915-022-01455-4https://doi.org/10.1186/1741-7007-3-1
  75. 75. Jia C, Zhao S, Bao T, Zhao P, Peng K, Guo Q, et al. Tomato BZR/BES transcription factor SlBZR1 positively regulates BR signaling and salt stress tolerance in tomato and Arabidopsis. Plant Sci. 2021;302:110719. https://doi.org/10.1016/j.plantsci.2020.110719
  76. 76. Tian X, He M, Mei E, Zhang B, Tang J, Xu M, et al. WRKY53 integrates classic brassinosteroid signaling and the mitogen-activated protein kinase pathway to regulate rice architecture and seed size. The Plant Cell. 2021;33:2753-75. https://doi.org/10.1093/plcell/koab137
  77. 77. Solis CA, Yong MT, Zhou M, Venkataraman G, Shabala L, Holford P, et al. Evolutionary significance of NHX family and NHX1 in salinity stress adaptation in the genus Oryza. Int J Mole Sci. 2022;23:2092. https://doi.org/10.3390/ijms23042092https://doi.org/10.3390/ijms23042092
  78. 78. Gupta A, Shaw BP, Roychoudhury A. NHX1, HKT and monovalent cation transporters regulate K+ and Na+ transport during abiotic stress. In: Transporters and plant osmotic stress. Academic Press; 2021. pp. 1-27. https://doi.org/10.1016/B978-0-12-817958-1.00002-5
  79. 79. Sun Z, Zou Y, Xie C, Han L, Zheng X, Tian Y, et al. Brassinolide improves the tolerance of Malus hupehensis to alkaline stress. Front Plant Sci. 2022;13:1032646. https://doi.org/10.3389/fpls.2022.1032646
  80. 80. Cao Y, Song H, Zhang L. New insight into plant saline-alkali tolerance mechanisms and application to breeding. Int J Mole Sci. 2022;23:16048. https://doi.org/10.3390/ijms232416048
  81. 81. Azhar N, Su N, Shabala L, Shabala S. Exogenously applied 24-epibrassinolide (EBL) ameliorates detrimental effects of salinity by reducing K+ efflux via depolarization-activated K+ channels. Plant and Cell Phys. 2017;58(4):802-10. https://doi.org/10.1093/pcp/pcx026
  82. 82. Sharma AK, Pradhan J, Kumar S, Pramanik K, Kastury C, Kumari G, et al. Root responses under water deficit stress: unraveling the impact on wheat crop and the ameliorating role of brassinolide. J Environ Bio. 2024;45(1):87-95. http://doi.org/10.22438/jeb/45/1/MRN-5169
  83. 83. Purty RS, Kumar G, Singla-Pareek SL, Pareek A. Towards salinity tolerance in Brassica: an overview. Physiology and Molecular Biology of Plants. 2008;14(1):39-49. https://doi.org/10.1007/s12298-008-0004-4

Downloads

Download data is not yet available.