Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Optimizing flowering time in floriculture: Strategies for year-round production

DOI
https://doi.org/10.14719/pst.7041
Submitted
2 January 2025
Published
19-05-2025
Versions

Abstract

The ornamental flower industry gradually shifts from conventional cultivation to extended cropping seasons and off-season production to meet market demands. Altering flowering time is highly desirable to ensure high-quality yields at targeted occasions such as festivities and weddings, thereby balancing trade by preventing market oversupply. Flower production is influenced by genetic makeup and a sequence of growth and developmental events. Recent studies highlight the role of specific genes in regulating flowering time and plant vigor, directly impacting yield quality. Key environmental factors such as vernalization, temperature and photoperiod are crucial in determining elite germplasm. While photoperiod control is well-studied in cereals and other crops, research in floriculture remains limited. Growth regulators assist in moderating plant growth, development and responses to biotic and abiotic stresses, either inducing flowering as a survival mechanism or delaying it under adverse conditions. These responses depend on stimulus intensity, plant developmental stage and cultivar characteristics. Understanding the regulation of flowering provides critical insights into optimizing harvest timing, minimizing market glut and enhancing produce value under varying environmental challenges.

References

  1. Bala M, Sala F. Optimization of some parameters for ornamental plants production in off-season. Scientific Papers Series; Sci Papers Ser Manag Econom Eng Agric Rural Dev. 2020;20(4):79-88.
  2. Keerthishankar K, Nivya K. Flower forcing: A novel approach to enhance farmer's income. Recent Innov Approaches Agric Sci. 2022:85.
  3. Anumala NV, Kumar R. Floriculture sector in India: current status and export potential. J Hortic Sci Biotechnol. 2021;96(5):673–80. https://doi.org/10.1080/14620316.2021.1902863
  4. Darras A. Overview of the dynamic role of specialty cut flowers in the international cut flower market. Hortic. 2021;7(3):51. https://doi.org/10.3390/horticulturae7030051
  5. Pereira PC, Parente CE, Carvalho GO, Torres JP, Meire RO, Dorneles PR, et al. A review on pesticides in flower production: A push to reduce human exposure and environmental contamination. Environ Pollut. 2021;289:117817. https://doi.org/10.1016/j.envpol.2021.117817
  6. Area and Production of Horticulture crops for 2023-24 [Internet]. 2024. Available from: https://agriwelfare.gov.in/en/StatHortEst
  7. Shelke A. Commercial floriculture industry in India: status and prospects. Int J Manag Inf Technol. 2014;10(2):1837–43. http://dx.doi.org/10.24297/ijmit.v10i2.639
  8. Harshitha H, Chandrashekar S, Harishkumar K. Photoperiod manipulation in flowers and ornamentals for perpetual flowering. Pharma Innov J. 2021;10(6):127-34.
  9. Pavolova H, Bakalar T, KYSELA K, Klimek M, Hajduova Z, Zawada M. The analysis of investment into industries based on portfolio managers. Acta Montan Slovaca. 2021;26(1). https://doi.org/10.46544/AMS.v26i1.14
  10. Akbari M, Loganathan N, Tavakolian H, Mardani A, Streimikiene D. The dynamic effect of micro-structural shocks on private investment behavior. Acta Montan Slovaca. 2021;26(1):1–17. https://doi.org/10.46544/AMS.v26i1.01
  11. Marousek J, Gavurova B, Marouskova A. Cost breakdown indicates that biochar production from microalgae in Central Europe requires innovative cultivation procedures. Energy Nexus. 2024;16:100335. https://doi.org/10.1016/j.nexus.2024.100335
  12. Minofar B, Milcic N, Marousek J, Gavurova B, Marouskova A, Research T. Understanding the molecular mechanisms of interactions between biochar and denitrifiers in N2O emissions reduction: pathway to more economical and sustainable fertilizers. Soil Till Res. 2025;248:106405. https://doi.org/10.1016/j.still.2024.106405
  13. Ha TM, Sciences F. A review of plants’ flowering physiology: The control of floral induction by juvenility, temperature and photoperiod in annual and ornamental crops. Asian J Agric Food Sci. 2014;2(3).
  14. SALCA ROMAN GM, Lehel L, Somsai AP, Stoian-Dod RL, Dan C, Bunea CI, et al. The use of genetic resources in rose breeding and creation of new rose cultivars through hybridization and selection. Not Bot Horti Agrobo Cluj-Napoca. 2024;52(1). https://doi.org/10.15835/nbha52113585
  15. Zhao K, Xiao Z, Zeng J, Xie HJA. Effects of different storage conditions on the browning degree, PPO activity and content of chemical components in fresh Lilium bulbs (Lilium brownii FE Brown var. viridulum Baker.). Agric. 2021;11(2):184. https://doi.org/10.3390/agriculture11020184
  16. Nakano Y, Higuchi Y, Sumitomo K, Oda A, Hisamatsu T, Naro. Delay of flowering by high temperature in chrysanthemum: heat-sensitive time-of-day and heat effects on CsFTL3 and CsAFT gene expression. J Hortic Sci Biotechnol. 2015;90(2):143–49. https://doi.org/10.1080/14620316.2015.11513165
  17. Tiwari P, Bose SK, Gautam A, Chen JT. Emerging trends and insights into the cultivation strategies, ethnomedicinal uses and socio-economic attributes of orchids. J Hortic Sci Biotech. 2023;98(3):273–98. https://doi.org/10.1080/14620316.2022.2164524
  18. Leeggangers HA, Rosilio-Brami T, Bigas-Nadal J, Rubin N, Van Dijk AD, Nunez de Caceres Gonzalez FF, et al. Tulipa gesneriana and Lilium longiflorum PEBP genes and their putative roles in flowering time control. Plant Cell Physiol. 2018;59(1):90–106.
  19. Kisvarga S, Horotan K, Wani MA, Orloci LJH. Plant responses to global climate change and urbanization: implications for sustainable urban landscapes. Hortic. 2023;9(9):1051. https://doi.org/10.3390/horticulturae9091051
  20. Sharma R, Kumari P, Sahare H. Greenhouse Climate Control for Flower Regulation in Ornamental Crops. Protected Cultivation: Apple Academic Press; 2024. p. 379–401.
  21. Sajid M, Amin NU, Khan H, Rehman A, Hussain I. Influence of various photoperiods on enhancing the flowering time in chrysanthemum (Chrysanthemum morifolium). Int J Biosci. 2016;8(2):115–23. https://doi.org/10.12692/ijb/8.2.115-123
  22. Erwin J. Factors affecting flowering in ornamental plants. Flower seeds: biology and technology: CABI Publishing Wallingford UK; 2005. p. 87–115.
  23. Paradiso R, Proietti S. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. J Plant Growth Regul. 2022;41(2):742–80. https://doi.org/10.1007/s00344-021-10337-y
  24. Chomchalow N. Flower forcing for cut flower production with special reference to Thailand. AU J Technol. 2004;7:137–44.
  25. Higuchi Y. Florigen and anti-florigen: flowering regulation in horticultural crops. Breeding Sci. 2018;68(1):109–18. https://doi.org/10.1270/jsbbs.17084
  26. Iftikhar T, Majeed H, Waheed M, Zahra SS, Niaz M, Bilal B, et al. Essentials of Medicinal and Aromatic Crops: Springer; 2023. p. 373–97.
  27. Proietti S, Scariot V, De Pascale S, Paradiso R. Flowering mechanisms and environmental stimuli for flower transition: bases for production scheduling in greenhouse floriculture. Plants 2022;11(3):432. https://doi.org/10.3390/plants11030432
  28. Cave RL, Birch CJ, Hammer GL, Erwin JE, Johnston ME. Juvenility and flowering of Brunonia australis (Goodeniaceae) and Calandrinia sp.(Portulacaceae) in relation to vernalization and day length. Ann Bot. 2011;108(1):215–20. https://doi.org/10.1093/aob/mcr116
  29. Huang NC, Jane WN, Chen J, Yu TS. Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. Plant J. 2012;72(2):175–84. https://doi.org/10.1111/j.1365-313X.2012.05076.x
  30. Oda A, Narumi T, Li T, Kando T, Higuchi Y, Sumitomo K, et al. CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums. J Exp Bot. 2012;63(3):1461–77. https://doi.org/10.1093/jxb/err387
  31. Chandel A, Thakur M, Singh G, Dogra R, Bajad A, Soni V, et al. Flower regulation in floriculture: An agronomic concept and commercial use. J Plant Growth Regul. 2023;42(4):2136–61. https://doi.org/10.1007/s00344-022-10688-0
  32. Higuchi Y, Hisamatsu T. CsTFL1, a constitutive local repressor of flowering, modulates floral initiation by antagonising florigen complex activity in chrysanthemum. Plant Sci. 2015;237:1–7. https://doi.org/10.1016/j.plantsci.2015.04.011
  33. Thiruvengadam M, Yang CH. Ectopic expression of two MADS box genes from orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum) alters flower transition and formation in Eustoma grandiflorum. Plant Cell Rep. 2009;28:1463–73. https://doi.org/10.1007/s00299-009-0746-7
  34. Fornara F, de Montaigu A, Coupland G. SnapShot: control of flowering in Arabidopsis. Cell. 2010;141(3):550. https://doi.org/10.1016/j.cell.2010.04.024
  35. Hu Q, Yin M, Gao Z, Zhang Z, Zhu Y, Hu R, et al. FLOWERING LOCUS C-like mediates low-ambient-temperature-induced late flowering in chrysanthemum. J Exp Bot. 2025:eraf019. https://doi.org/10.1093/jxb/eraf019
  36. Barbosa NC, Dornelas MC. The roles of gibberellins and cytokinins in plant phase transitions. Trop Plant Biol. 2021;14(1):11–21. https://doi.org/10.1007/s12042-020-09272-1
  37. Li T, Niki T, Nishijima T, Douzono M, Koshioka M, Hisamatsu T. Roles of CmFL, CmAFL1 and CmSOC1 in the transition from vegetative to reproductive growth in Chrysanthemum morifolium Ramat. J Hortic Sci Biotechnol. 2009;84(4):447–53. https://doi.org/10.1080/14620316.2009.11512547
  38. Wang L, Sun J, Ren L, Zhou M, Han X, Ding L, et al. CmBBX8 accelerates flowering by targeting CmFTL1 directly in summer chrysanthemums. Plant Biotechnol J. 2020;18(7):1562–72.
  39. Sun J, Wang H, Ren L, Chen S, Chen F, Jiang J. CmFTL2 is involved in the photoperiod-and sucrose-mediated control of flowering time in chrysanthemum. Hortic Res. 2017;4. https://doi.org/10.1038/hortres.2017.1
  40. Zuo L, Wang T, Guo Q, Yang F, Zou Q, Zhang M. Conserved CO-FT Module Regulating Flowering Time in Chrysanthemum indicum L. Russ J Plant Physiol. 2021;68(6):1018–28. https://doi.org/10.1134/S102144372106025X
  41. Shulga OA, Mitiouchkina TY, Shchennikova AV, Skryabin KG, Dolgov SV. Overexpression of AP1-like genes from Asteraceae induces early flowering in transgenic Chrysanthemum plants. In Vitro Cell Dev Biol Plant. 2011;47:553–60. https://doi.org/10.1007/s11627-011-9393-0
  42. Randoux M, Daviere JM, Jeauffre J, Thouroude T, Pierre S, Toualbia Y, et al. R o KSN, a floral repressor, forms protein complexes with R o FD and R o FT to regulate vegetative and reproductive development in rose. New Phytol. 2014;202(1):161–73. https://doi.org/10.1111/nph.12625
  43. Otagaki S, Ogawa Y, Hibrand-Saint Oyant L, Foucher F, Kawamura K, Horibe T, et al. Genotype of FLOWERING LOCUS T homologue contributes to flowering time differences in wild and cultivated roses. Plant Biol. 2015;17(4):808–15. https://doi.org/10.1111/plb.12299
  44. Dong X, Jiang X, Kuang G, Wang Q, Zhong M, Jin D, et al. Genetic control of flowering time in woody plants: roses as an emerging model. Plant Divers. 2017;39(2):104–10. https://doi.org/10.1016/j.pld.2017.01.004
  45. Ruokolainen S, Ng YP, Broholm SK, Albert VA, Elomaa P, Teeri TH. Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition. Plant Biol. 2010;10:1–11. https://doi.org/10.1186/1471-2229-10-128
  46. Zhang MZ, Wang LL, Ye D, Chen X, Wu ZY, Lin XJ, et al. Sucrose treatment alters floral induction and development in vitro in gloxinia. In Vitro Cell Dev Biol Plant. 2012;48:167–71. https://doi.org/10.1007/s11627-012-9424-5
  47. Li X, Bian H, Song D, Ma S, Han N, Wang J, et al. Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Ann Bot. 2013;111(5):791–99. https://doi.org/10.1093/aob/mct034
  48. Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T. Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol. 2015;66(1):441–64. https://doi.org/10.1146/annurev-arplant-043014-115555
  49. Pawlowski A, Guzman JL, Rodriguez F, Berenguel M, Sanchez J, Dormido S. Simulation of greenhouse climate monitoring and control with wireless sensor network and event-based control. Sensors. 2009;9(1):232–52. https://doi.org/10.3390/s90100232
  50. Paradiso R, Aronne G, De Pascale S. Thermal and light requirements for flower differentiation of snapdragon. In: International Symposium on High Technology for Greenhouse System Management: Greensys 2007 801;2007. p. 1399-1406
  51. Jagadish SK, Bahuguna RN, Djanaguiraman M, Gamuyao R, Prasad PV, Craufurd PQ. Implications of high temperature and elevated CO2 on flowering time in plants. Front Plant Sci. 2016;7:913. https://doi.org/10.3389/fpls.2016.00913
  52. Thakur M, Kumar R. Foliar application of plant growth regulators modulates the productivity and chemical profile of damask rose (Rosa damascena Mill.) under mid-hill conditions of the western Himalaya. Ind Crops Prod. 2020;158:113024. https://doi.org/10.1016/j.indcrop.2020.113024
  53. Boldt JK, Altland JE. Timing of a short-term reduction in temperature and irradiance affects growth and flowering of four annual bedding plants. Hortic. 2019;5(1):15. https://doi.org/10.3390/horticulturae5010015
  54. Sumitomo K, Li T, Hisamatsu T. Gibberellin promotes flowering of chrysanthemum by upregulating CmFL, a chrysanthemum FLORICAULA/LEAFY homologous gene. Plant Sci. 2009;176(5):643–49. https://doi.org/10.1016/j.plantsci.2009.02.003
  55. King R, Worrall R, Dawson I. Diversity in environmental controls of flowering in Australian plants. Sci Hortic. 2008;118(2):161–67. https://doi.org/10.1016/j.scienta.2008.05.032
  56. Saha T, Kadam G, Kumar G, Majumder J, Rai P, Kumar R. Screening and evaluation of thermo-and photo-insensitive lines for off-season production of chrysanthemum. In: IV International Conference on Landscape and Urban Horticulture. 1181;2013. p. 77-84
  57. Coelho LL, Mackenzie KK, Lutken H, Muller R. Effect of cold night temperature on flowering of Kalanchoe species. Acta Sci Pol Hortic Cultus. 2018;17(3):121–25. https://doi.org/10.24326/asphc.2018.3.12
  58. Fragoso-Jimenez JC, Silva-Morales J, Barba-Gonzalez R, Castaneda-Saucedo MC, Tapia-Campos E. Temperature effects on meristem differentiation and flowering date in tuberose (Agave amica L.). Sci Hortic. 2021;275:109663. https://doi.org/10.1016/j.scienta.2020.109663
  59. Suh JK, Wu XW, Lee AK, Roh MS. Growth and flowering physiology and developing new technologies to increase the flower numbers in the Genus Lilium. Hortic Environ Biotechnol. 2013;54:373–87. https://doi.org/10.1007/s13580-013-0058-2
  60. Lucidos JG, Younis A, Hwang YJ, Lim KB. Determination of optimum conditions for breaking bulb dormancy in relation to growth and flowering in Lilium hansonii. Hortic Environ Biotechnol. 2014;55:257–62. https://doi.org/10.1007/s13580-014-0143-1
  61. Yen CY, Starman TW, Wang YT, Niu G. Effects of cooling temperature and duration on flowering of the nobile Dendrobium orchid. HortSci. 2008;43(6):1765–69. https://doi.org/10.21273/HORTSCI.43.6.1765
  62. Noy-Porat T, Cohen D, Mathew D, Eshel A, Kamenetsky R, Flaishman MA. Turned on by heat: differential expression of FT and LFY-like genes in Narcissus tazetta during floral transition. J Exp Bot. 2013;64(11):3273–84. https://doi.org/10.1093/jxb/ert165
  63. Warner RM. Temperature and photoperiod influence flowering and morphology of four Petunia spp. HortScience. 2010;45(3):365–68. https://doi.org/10.21273/HORTSCI.45.3.365
  64. Nordli EF, Strom M, Torre S. Temperature and photoperiod control of morphology and flowering time in two greenhouse grown Hydrangea macrophylla cultivars. Sci Hortic. 2011;127(3):372–77. https://doi.org/10.1016/j.scienta.2010.09.019
  65. Oh W, Kang KJ, Cho KJ, Shin JH, Kim KS. Temperature and long-day lighting strategy affect flowering time and crop characteristics in Cyclamen persicum. Hortic Environ Biotechnol. 2013;54:484–91. https://doi.org/10.1007/s13580-013-0111-1
  66. Ahmed M, Ahmad S. Systems modeling: Springer; 2020.
  67. Mer MS, Attri BL. Effect of photoperiod on flowering in ornamental annuals. J Med Plants Stud. 2015;3(4 part B):121–26.
  68. Hamamoto H, Shimaji H, Higashide T. Budding response of horticultural crops to night break with red light on alternate days. Environ Control Biol. 2005;43(1):21–27. https://doi.org/10.2525/ecb.43.21
  69. Kim YJ, Park YJ, Kim KS. Night interruption promotes flowering and improves flower quality in the Doritaenopsis orchid. Flower Res J. 2015;23:6–10. http://doi.org/10.11623/frj.2015.23.1.3
  70. Meng Q, Runkle ES. Controlling flowering of photoperiodic ornamental crops with light-emitting diode lamps: A coordinated grower trial. HortTechnol. 2014;24(6):702–11. https://doi.org/10.21273/HORTTECH.24.6.702
  71. Meng Q, Runkle ES. Moderate-intensity blue radiation can regulate flowering, but not extension growth, of several photoperiodic ornamental crops. Environ Exp Bot. 2017;134:12–20. https://doi.org/10.1016/j.envexpbot.2016.10.006
  72. Currey C, Erwin J. Variation among Kalanchoe species in their flowering responses to photoperiod and short-day cycle number. J Hortic Sci Biotechnol. 2010;85(4):350–54. https://doi.org/10.1080/14620316.2010.11512679
  73. Walters KJ, Hurt AA, Lopez RG. Flowering, stem extension growth and cutting yield of foliage annuals in response to photoperiod. HortSci. 2019;54(4):661–66. https://doi.org/10.21273/HORTSCI13789-18
  74. Blanchard MG, Runkle ES. Temperature during the day, but not during the night, controls the flowering of Phalaenopsis orchids. J Exp Bot. 2006;57(15):4043–49. https://doi.org/10.1093/jxb/erl176
  75. Blanchard MG, Runkle ES. Intermittent light from a rotating high-pressure sodium lamp promotes the flowering of long-day plants. HortSci. 2010;45(2):236–41. https://doi.org/10.21273/HORTSCI.45.2.236
  76. Torres AP, Lopez RG. Photoperiod and temperature influence flowering responses and morphology of Tecoma stans. HortSci. 2011;46(3):416–19. https://doi.org/10.21273/HORTSCI.46.3.416
  77. Kumar KP, Sabu M, Thomas VP. Effect of temperature and light on the promotion of off-season flowering in island purple ginger, Boesenbergia siphonantha (Baker) M. Sabu et al. (Zingiberaceae)-a promising ornamental ginger from Andaman Islands. J Hortic Biotechnol. 2013.
  78. Higuchi Y, Narumi T, Oda A, Nakano Y, Sumitomo K, Fukai S, et al. The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proc Natl Acad Sci USA. 2013;110(42):17137–42. https://doi.org/10.1073/pnas.1307617110
  79. Zheng L, Van Labeke MC. Effects of different irradiation levels of light quality on Chrysanthemum. Sci Hortic. 2018;233:124–31. https://doi.org/10.1016/j.scienta.2018.01.033
  80. Kohler AE, Lopez RG. Duration of light-emitting diode (LED) supplemental lighting providing far-red radiation during seedling production influences subsequent time to flower of long-day annuals. Sci Hortic. 2021;281:109956. https://doi.org/10.1016/j.scienta.2021.109956
  81. Sharathkumar M, Heuvelink E, Marcelis LF, Van Ieperen W. Floral induction in the short-day plant chrysanthemum under blue and red extended long-days. Front Plant Sci. 2021;11:610041. https://doi.org/10.3389/fpls.2020.610041
  82. Nissim-Levi A, Kitron M, Nishri Y, Ovadia R, Forer I, Oren-Shamir M. Effects of blue and red LED lights on growth and flowering of Chrysanthemum morifolium. Sci Hortic. 2019;254:77–83. https://doi.org/10.1016/j.scienta.2019.04.080
  83. Amiri A, Kafi M, Kalate-Jari S, Matinizadeh M. Tulip response to different light sources. J Anim Plant Sci. 2018.
  84. Magar Y, Noguchi A, Furufuji S, Kato H, Amaki W. Effects of light quality during supplemental lighting on Phalaenopsis flowering. In: III International Orchid Symposium 1262; 2018. p. 75-80
  85. Craig D, Runkle E. Using LEDs to quantify the effect of the red to far-red ratio of night-interruption lighting on flowering of photoperiodic crops. In: VII International Symposium on Light in Horticultural Systems 956; 2012. p. 179-86
  86. Owen WG, Meng Q, Lopez RG. Promotion of flowering from far-red radiation depends on the photosynthetic daily light integral. HortSci. 2018;53(4):465–71. https://doi.org/10.21273/HORTSCI12544-17
  87. Loconsole D, Santamaria P. UV lighting in horticulture: A sustainable tool for improving production quality and food safety. Hortic. 2021;7(1):9. https://doi.org/10.3390/horticulturae7010009
  88. Darras AI, Vlachodimitropoulou A, Dimitriadis C. Regulation of corm sprouting, growth and flowering of pot Freesia hybrida L. plants by cold and UV-C irradiation forcing. Sci Hortic. 2019;252:110–12. https://doi.org/10.1016/j.scienta.2019.03.045
  89. Campos-Rivero G, Osorio-Montalvo P, Sanchez-Borges R, Us-Camas R, Duarte-Ake F, De-la-Pena C. Plant hormone signaling in flowering: an epigenetic point of view. J Plant Physiol. 2017;214:16–27. https://doi.org/10.1016/j.jplph.2017.03.018
  90. Hedden P, Sponsel V. A century of gibberellin research. J Plant Growth Regul. 2015;34:740–60. https://doi.org/10.1007/s00344-015-9546-1
  91. Vijayakumar S, Rajadurai K, Pandiyaraj P. Effect of plant growth regulators on flower quality, yield and postharvest shelf life of China aster (Callistephus chinensis L. nees.) cv. local. Int J Agric Sci Res. 2017;7(2):297–304.
  92. Dogra S, Pandey R, Bhat D. Influence of gibberellic acid and plant geometry on growth, flowering and corm production in gladiolus (Gladiolus grandiflorus) under Jammu agroclimate. Int J Pharma Bio Sci. 2012;3(4):1083–90.
  93. Kousika S, Muraleedharan A, Sha K, Karthikeyan P, Kumar CP, Joshi J, et al. Response of plant growth regulators on the growth, flowering and yield attributes of African marigold (Tagetes erecta. L). Plant Arch. 2021. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.089
  94. Harkulkar B, Dalvi N, Salvi B, Pawar C, Deshpande R. Effects of pruning levels and growth regulators on Jasmine (Jasminum sambac L.) under Konkan condition. J Eco-friendly Agric. 2022. http://doi.org/10.5958/2582-2683.2022.00005.3
  95. Yamaguchi N, Wu MF, Winter CM, Berns MC, Nole-Wilson S, Yamaguchi A, et al. A molecular framework for auxin-mediated initiation of flower primordia. Dev Cell. 2013;24(3):271–82. https://doi.org/10.1016/j.devcel.2012.12.017
  96. Singh A, Kumar P. Response of cuttings of different carnation (Dianthus Caryophyllus L.) cultivars to rooting hormones. J Pharmacogn Phytochem. 2021;10(1):933–36.
  97. Kumar R. Performance of exotic gladiolus (Gladiolus hybridus) for off-season under Meghalaya conditions. Indian J Agric Sci. 2014;84(1):164–66. https://doi.org/10.56093/ijas.v84i1.37177
  98. Sheng J, Li X, Zhang D. Gibberellins, brassinolide and ethylene signaling were involved in flower differentiation and development in Nelumbo nucifera. Hortic Plant J. 2022;8(2):243–50. https://doi.org/10.1016/j.hpj.2021.06.002
  99. Pal S. Role of plant growth regulators in floriculture: An overview. J Pharmacogn Phytochem. 2019;8(3):789–96.
  100. Kumaresan M, Rajaselvam M, Devi K. Effect of pruning and paclobutrazol application on off-season production of jasmine (Jasminum sambac L.). Res J Agric Sci. 2023;14(5):1555–57.
  101. Mishra FK, Mishra S, Bahadur V. Effect of growth regulators on growth, yield and shelf life in amaryllis lily (Amaryllis belladona) cv. J Pharmacogn Phytochem. 2019;8(2):1217–19.
  102. Sajjad Y, Jaskani MJ, Ashraf MY, Qasim M, Ahmad R. Response of morphological and physiological growth attributes to foliar application of plant growth regulators in gladiolus 'White Prosperity'. Pak J Agric Sci. 2014;51(1).
  103. Latimer JG, Whipker B. Selecting and using plant growth regulators on floricultural crops. 2019.
  104. Kadam M, Malshe K, Salvi B. Influence of plant growth regulators on vegetative growth in gaillardia (Gaillardia pulchella) cv. local double. Pharma Inn J. 2020;9(10):575–77.
  105. Giri B, Beura S. Effect of plant bio-regulators on vegetative growth and flowering of gerbera (Gerbera jamesonii B.) cv. Goliath in open field condition. Prog Hortic. 2020;52(2):208–12. http://doi.org/10.5958/2249-5258.2020.00031.7
  106. Sharifuzzaman S, Ara K, Rahman M, Kabir K, Talukdar M. Effect of GA3, CCC and MH on vegetative growth, flower yield and quality of chrysanthemum. Int J Expt Agric. 2011;2(1):17–20.
  107. Hassanpour Asil M, Roein Z, Abbasi J. Response of tuberose (Polianthes tuberose L.) to gibberellic acid and benzyladenine. Hortic Environ Biotechnol. 2011;52:46–51. https://doi.org/10.1007/s13580-011-0073-0
  108. Vijai Kumar VK, Vipin Kumar VK, Vandana Umrao VU, Monbir Singh MS. Effect of GA3 and IAA on growth and flowering of carnation. HortFlora Res Spectrum. 2012.
  109. Sindhuja M, Prasad V. Effect of different plant growth regulators and their levels on vegetative growth, floral yield and vase life of China aster [Callistephus chinensis (L.) Nees]: A review. J Pharmacogn Phytochem. 2018;7(6):1490–92.
  110. Chang MZ, Huang CH. Effects of GA3 on promotion of flowering in Kalanchoe spp. Sci Hortic. 2018;238:7–13. https://doi.org/10.1016/j.scienta.2018.04.001
  111. Shrestha B, Karki A, Shrestha J. Effect of foliar application of gibberellic acid (GA3) on quality attributes of Calendula flowers (Calendula officinalis L.) cv.‘Gitana Fiesta’in Chitwan, Nepal J Agric Sci Pract. 2020;5(4):168–73. https://doi.org/10.31248/JASP2020.219
  112. Abbas G, Younis H, Naz S, Fatima Z, Hussain S, Ahmed M, et al. Effect of planting dates on agronomic crop production. Agron Crops. 2019;1:131–47. https://doi.org/10.1007/978-981-32-9151-5_8
  113. Gul F, Shahri W, Tahir I. Bulbous ornamentals: Role and scope in the floriculture industry. The Global Floriculture Industry: Apple Academic Press; 2020. p. 15–38.
  114. Bahadoran M, Salehi H, Eshghi S. Growth and flowering of tuberose (Polianthes tuberosa L.) as affected by adding poultry litter to the culture medium. Span J Agric Res. 2011;9(2):531–36. https://doi.org/10.5424/sjar/20110902-127-10
  115. Dhatt KK, Jhanji S. Evaluating gladiolus varieties for off-season planting using agro-meteorological indices. J Agrometeorol. 2021;23(1):46–53. https://doi.org/10.54386/jam.v23i1.87
  116. Khutiya K, Gupta Y, Dhiman S, Sharma P. Effect of planting dates on growth, flowering and multiplication of gladiolus (Gladiolus grandiflorus) cv.‘Solan Mangla’. Curr Hortic. 2018;6(2):58–63.
  117. Noor-ul-Amin NU, Muhammad Sajid MS, Habib Ahmad HA, Muhammad Sajid MS. Effect of sowing dates on enhancing the flowering time in chrysanthemum (Chrysanthemum morifolium). Int J Biosci. 2014;5(12):152-59.
  118. Vishwakarma SK, Ashok Kumar AK. Effect of nitrogen, planting distance and bulb size on vase life of tuberose (Polianthes tuberosa L.) cv. Hyderabad Double. Plant Arch. 2018.
  119. Purwantono A, Suparto S. Effect of pruning intensity and doses of fertilization on content of macronutrients and hormones in leaves of rewatered citrus trees. In: IOP Conference Series: Earth Environmental Science; 2021;653(1). p. 012148.
  120. Baslam M, Mitsui T, Sueyoshi K, Ohyama T. Recent advances in carbon and nitrogen metabolism in C3 plants. Int J Mol Sci. 2020;22(1):318. https://doi.org/10.3390/ijms22010318
  121. Younis A, Riaz A, Aslam S, Ahsan M, Tariq U, Javaid F, et al. Effect of different pruning dates on growth and flowering of Rosa centifolia. Pak J Agric Sci. 2013;50(4):605–09.
  122. Saifuddin M, Hossain A, Normaniza O. Impacts of shading on flower formation and longevity, leaf chlorophyll and growth of Bougainvillea glabra. Asian J Plant Sci. 2010;9(1):20. https://doi.org/10.3923/ajps.2010.20.27
  123. Suganya S, Rajamani K, Ganga M, Latha M, Jeyakumar P. Response of flower quality and physiological characters of Jasminum sambac (L.) to modified planting system and pruning schedule. J Appl Nat Sci. 2023;15(1):273–79. https://doi.org/10.31018/jans.v15i1.4327
  124. Kumaresan M, Rajadurai K, Ganga M, Sivakumar R. Effect of pruning and paclobutrazol application on physiological and flowering characters of jasmine (Jasminum sambac L.) during off Season. Int J Curr Sci. 2017;5(5):2374–78.
  125. Nandhini C, Balasubramanian P, Beaulah A, Amutha R. Effect of physical and chemical interventions on flowering and quality parameters of jasmine (Jasminum sambac Ait.) Cv. Ramanathapuram Gundumalli during off-season. Int J Chem Stud. 2018;6(4):1653–57.
  126. Akanksha P, Prasanth P, Joshi V, Kumar SP. Influence of certain chemicals on flower induction flowering, quality and yield in jasmine (Jasminum sambac. L.). Int J Curr Microbiol App Sci. 2021;10(01):3401–08. https://doi.org/10.20546/ijcmas.2021.1001.400
  127. Santhosh S, Anupama T, Sreelatha U, Sankar M, Sreekumar PM. Impact of plant growth regulators and pruning on flowering in Jasmine (Jasminum sambac L.). J Trop Agric. 2023;61(1):117–22.
  128. Navya V, Nirmala K, Vasanthakumari R, Savita M, Seetharamu G, Ashoka H. Augmentation of growth and flowering characteristics for off-season flower production in jasmine (J. sambac (L.) Aiton.) through pruning and growth regulators. Mysore J Agric Sci. 2024;58(1).
  129. Khanchana K, Jawaharlal M. Influence of different pruning months on growth and flowering of Jasminum auriculatum. J Pharmacogn Phytochem. 2019;8(3):3654–56.
  130. Hassanein AM. Improved quality and quantity of winter flowering in rose (Rosa spp.) by controlling the timing and type of pruning applied in autumn. World J Agric Sci. 2010;6(3):260–67.
  131. Thakur M, Kumar R. Agro-meteorological indices of aromatic rose (Rosa damascena Mill.) influenced by pruning time in the western Himalayas. J Agrometeorol. 2018;20(1):31–35. https://doi.org/10.54386/jam.v20i1.499
  132. Abdou MA, Fouad AH, Hassan A. Influence of compost fertilization and pinching number on growth and flowering of cineraria plant. Sci J Agric Sci. 2023;5(2):17–30. https://doi.org/10.21608/SJAS.2023.2128
  133. Rathore S, Walia S, Kumar R. Biomass and essential oil of Tagetes minuta influenced by pinching and harvesting stage under high precipitation conditions in the western Himalayas. J Essent Oil Res. 2018;30(5):360–68. https://doi.org/10.1080/10412905.2018.1486744
  134. Kedar D, Panchbhai D, Chatse D. Influence of pinching on growth, flowering and yield of different flower crops. Curr Microbiol Appl Sci. 2021;10:2319–7706.
  135. Khan A, Abbas MW, Ullah S, Ullah A, Ali S, Khan AU, et al. Effect of pinching on growth and flower production of marigold. Int J Environ Sci Nat Resour. 2018;15(1):21–23. http://doi.org/10.19080/IJESNR.2018.15.555903
  136. Ullah L, Amin N, Wali A, Ali A, Khan SS, Ali MS, et al. Improvement of Zinnia flower (Zinnia elegans) through evaluating of various pinching methods. Glob Adv Res J Agric Sci. 2019;8(4):179–84.
  137. Uddin A, Shahrin S, Ahmad H, Rahman SS, Shimasaki K, Uddin A, et al. Influence of terminal bud pinching on growth and flowering of lisianthus (Eustoma grandiflorum). Int J Bus Soc Sci Res 2015;4(1):37–40.
  138. Youssef A. Effect of some growth retardants and pinching on growth, flowering and chemical composition of Tabernaemontana coronaria plant. Ann Agric Sci Moshtohor. 2020;58(4):1023–38. https://dx.doi.org/10.21608/assjm.2020.155384
  139. Khobragade RK, Bisen S, Thakur RS. Effect of planting distance and pinching on growth, flowering and yield of China aster (Callistephus chinensis) cv. Poornima. Indian J Agric Sci.2012;82(4):334–39. https://doi.org/10.56093/ijas.v82i4.16645

Downloads

Download data is not yet available.