Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Biological control of greenhouse whiteflies (Trialeurodes vaporariorum) using indigenous Pseudomonas spp.: An eco- friendly approach

DOI
https://doi.org/10.14719/pst.7065
Submitted
4 January 2025
Published
17-05-2025
Versions

Abstract

Soil deterioration and environmental degradation caused by harsh chemical pesticides have led to the search for suitable alternatives that can not only control pests but also promote plant growth. Pseudomonas spp. has been exploited immensely for its biocontrol and plant growth promotion attributes. This study isolated 5 indigenous bacterial strains from eight rhizospheric soil samples from Shimla and Sirmour districts of Himachal Pradesh and further screened them for traits such as siderophores production and hydrolytic enzyme (amylase and protease) activity. Screening data of isolates showed production of siderophores (19.56%), amylase (50%) and protease (71.73%). The strain EU- SIRCK1243 was positive for all three traits and was tested for indole-3-acetic acid (IAA) production yielding 2.03±0.30 ?g/mL (with tryptophan) and 4.23±0.17 ?g/mL (without tryptophan). It was molecularly identified as Pseudomonas aeruginosa, on the basis of 16S rRNA gene sequencing and evaluated for bioefficacy against Trialeurodes vaporariorum (greenhouse whitefly) on tomato plants over two years (2022-2023). The average adult population declined with overall percent reductions of 54.11% in 2022 and 62.04% in consecutive year 2023. In case of nymph populations the overall, reductions was 59.13% in 2022 and 62.20% in 2023. The plant growth and physiological parameters after treatment with EU- SIRCK1243 showed significant increase in shoot and root lengths, fresh, dry biomass, yield and chlorophyll content as compared to control. It is suggested that the strain EU-SIRCK1243 is a promising biocontrol agent for greenhouse whitefly and an effective plant growth promoting bacterium. In future deliberation, the better development of Pseudomonas aeruginosa bioproducts could be emphasized.

References

  1. Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN. Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Asghar R, Nath YA, Neelam Y, editors. New and future developments in microbial biotechnology and bioengineering. 1. Amsterdam, The Netherlands,: Elsevier; 2020. p. 243–82. https://doi. org/10.1016/B978-0-12-820526-6.00016-6
  2. Thakur N, Tomar P, Kaur S, Jhamta S, Thakur R, AN Y. Entomopathogenic soil microbes for sustainable crop protection. In: AN Y, editor. Soil microbiomes for sustainable agriculture. 1. Cham: Springer; 2021. p. 529–71. https://doi. org/10.1007/978-3-030-73507-4_17
  3. Velivelli SL, De Vos P, Kromann P, Declerck S, Prestwich BD. Biological control agents: from field to market, problems and challenges. Trends Biotechnol. 2014;32(10):493–96. https://doi.org/10.1016/j.tibtech.2014.07.002
  4. Loper JE, Henkels MD, Rangel LI, Olcott MH, Walker FL, Bond KL, et al. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf?5 to Drosophila melanogaster. Environ Microbiol. 2016;18(10):3509–21. https://doi.org/10.1111/1462-2920.13369
  5. Bulla L, Jr, Rhodes RA, St. Julian G. Bacteria as insect pathogens. Annu Rev Microbiol. 1975;29:163–90. https://doi.org/10.1146/annurev.mi.29.100175.001115
  6. Bonaterra A, Badosa E, Daranas N, Francés J, Roselló G, Montesinos E. Bacteria as biological control agents of plant diseases. Microorganisms. 2022;10(9):1759. https://doi.org/10.3390/microorganisms10091759
  7. Pronk LJ, Bakker PA, Keel C, Maurhofer M, Flury P. The secret life of plant?beneficial rhizosphere bacteria: insects as alternative hosts. Environ Microbiol. 2022;24(8):3273–89. https://doi.org/10.1111/1462-2920.15968
  8. Novik G, Savich V, Kiseleva E. An insight into beneficial Pseudomonas bacteria. In: Shah MM, editor. Microbiology in agriculture and human health. 1. Rijeka, Croatia: IntechOpen; 2015. p. 73–105. https://doi.org/10.5772/60502
  9. Singh D, Ghosh P, Kumar J, Kumar A. Plant growth-promoting rhizobacteria (PGPRs): functions and benefits. In: Singh D, Gupta V, Prabha R, editors. Microbial interventions in agriculture and environment: Rhizosphere, microbiome and agro-ecology. 2. Singapore: Springer; 2019. p. 205–27. https://doi.org/10.1007/978-981-13-8383-0_7
  10. Barazani O, Friedman J. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol. 1999;25:2397–406. https://doi.org/10.1023/A:1020890311499
  11. Chin?A?Woeng TF, Bloemberg GV, Lugtenberg BJ. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 2003;157(3):503–23. https://doi.org/10.1046/j.1469-8137.2003.00686.x
  12. Haas D, Keel C. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol. 2003;41(1):117–53. https://doi.org/10.1146/annurev.phyto.
  13. 052002.095656
  14. Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005;3(4):307–19. https://doi.org/10.1038/nrmicro1129
  15. Paliwal D, Hamilton AJ, Barrett GA, Alberti F, Van Emden H, Monteil CL, et al. Identification of novel aphid?killing bacteria to protect plants. Microb Biotechnol. 2022;15(4):1203–20. https://doi.org/10.1111/1751-7915.13902
  16. Otsu Y, Matsuda Y, Mori H, Ueki H, Nakajima T, Fujiwara K, et al. Stable phylloplane colonization by entomopathogenic bacterium Pseudomonas fluorescens KPM-018P and biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Coleoptera: Coccinellidae). Biocontrol Sci Techn. 2004;14(5):427–39. https://doi.org/10.1080/09583150410001683538
  17. Hadi DF, Risan MH. Evaluating Effectiveness of Pseudomonas fluorescens and Serratia marcescens against Galleria mellonella. HIV Nurs. 2022;22(2):1380–84.
  18. Jeyarani S, Karuppuchamy P, Sathiah N. Influence of Pseudomonas fluorescens–induced plant defenses on efficacy of nucleopolyhedrovirus of Helicoverpa armigera in okra and tomato. Int J Veg Sci. 2011;17(3):283–95. https://doi.org/10.1080/19315260.2011.553122
  19. Bong C, Sikorowski P. Effects of cytoplasmic polyhedrosis virus and bacterial contamination on growth and development of the corn earworm, Helicoverpa zea (Lepidoptera: Noctuidae). J Invertebr Pathol. 1991;57(3):406–12. https://doi.org/10.1016/0022-2011(91)90145-G
  20. Gopal M, Gupta A. An opportunistic bacterial pathogen, Pseudomonas alcaligenes, may limit the perpetuation of Oryctes virus, a biocontrol agent of Oryctes rhinoceros L. Biocontrol Sci Techn. 2002;12(4):507–12. https://doi.org/10.1080/09583150220146068
  21. Aswathy V. Management of epilachna beetle, Henosepilachna vigintioctopunctata (Fab.) with phylloplane and pathogenic microorganisms. Vellayani: Kerala Agricultural University; 2015
  22. Qessaoui R, Amarraque A, Lahmyed H, Ajerrar A, Mayad EH, Chebli B, et al. Inoculation of tomato plants with rhizobacteria suppresses development of whitefly Bemisia tabaci (Gennadius) (Hemiptera Aleyrodidae): Agro-ecological application. PLoS One. 2020;15(4):e0231496. https://doi.org/10.1371/journal.pone.0231496
  23. Perring TM, Stansly PA, Liu T, Smith HA, Andreason SA. Whiteflies: Biology, ecology and management. In: Wakil W, Brust GE, Perring T, editors. Sustainable management of arthropod pests of tomato. Cambridge, MA, USA: Elsevier; 2018. p. 73–110. https://doi.org/10.1016/B978-0-12-802441-6.00004-8
  24. Manzari S, Fathipour Y. Whiteflies. In: Omkar S, editor. Polyphagous pests of crops. Singapore: Springer; 2021. p. 183–230. https://doi.org/10.1007/978-981-15-8075-8_4
  25. Kim I, Hwang C, Kim J, Lee M. Studies on host plants, development and distribution within plants of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood). Korean J Appl Entomol. 1986;25(4):201–07.
  26. Lorenzo ME, Grille G, Basso C, Bonato O. Host preferences and biotic potential of Trialeurodes vaporariorum and Bemisia tabaci (Hemiptera: Aleyrodidae) in tomato and pepper. Arthropod Plant Interact. 2016;10:293–301. https://doi.org/10.1007/s11829-016-9434-z
  27. Johnson M, Caprio L, Coughlin J, Tabashnik B, Rosenheim J, Welter S. Effect of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) on yield of fresh market tomatoes. J Econ Entomol. 1992;85(6):2370–76. https://doi.org/10.1093/jee/85.6.2370
  28. Singh V. Population modeling and management of greenhouse whitefly in tomato under protected cultivation. Palampur, Kangra, India: CSK Himachal Pradesh Krishi Vishvavidyalaya; 2017
  29. Kumari S. Biointensive management of greenhouse whitefly, Trialeurodes vaporariorum (Westwood) on cucumber under protected environment. Palampur, India: CSKHimachal Pradesh Krishi Vishvavidyalaya; 2021
  30. Stockwell VO, Stack JP. Using Pseudomonas spp. for integrated biological control. Phytopathol. 2007;97(2):244–49. https://doi.org/10.1094/PHYTO-97-2-0244
  31. Walsh UF, Morrissey JP, O'Gara F. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol. 2001;12(3):289–95. https://doi.org/10.1016/S0958-1669(00)00212-3
  32. Panpatte DG, Jhala YK, Shelat HN, Vyas RV. Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture. In: Singh D, Singh H, Prabha R, editors. Microbial inoculants in sustainable agricultural productivity: Research perspectives. 1. New Delhi: Springer; 2016. p. 257–70. https://doi.org/10.1007/978-81-322-2647-5_15
  33. Deshwal VK. Pseudomonas aeruginosa as biological control agent against plant pathogenic fungus Sclerotina sclerotiorum. Int J Plant Sci. 2012;2(1):14–17.
  34. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A. Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci. 2014;3(5):432–47.
  35. Castro G, Ferrero M, Méndez B, Sin¯ eriz F. Screening and selection of bacteria with high amylolytic activity. Acta Biotechnol. 1993;13(2):197–201. https://doi.org/10.1002/abio.370130220
  36. Manachini PL, Fortina MG, Parini C. Thermostable alkaline protease produced by Bacillus thermoruber—a new species of Bacillus. Appl Microbiol Biotechnol. 1988;28:409–13. https://doi.org/10.1007/BF00268205
  37. Schwyn B, Neilands J. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160(1):47–56. https://doi.org/10.1016/0003-2697(87)90612-9
  38. Bric JM, Bostock RM, Silverstone SE. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol. 1991;57(2):535–38. https://doi.org/10.1128/aem.57.2.535-538.1991
  39. Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951;26(1):192. https://doi.org/10.1104/pp.26.1.192
  40. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989;17(19):7843–53. https://doi.org/10.1093/nar/17.19.7843
  41. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. Multiple sequence alignment with Clustal X. Trends Bochem Sci. 1998;23(10):403–05. https://doi.org/10.1016/S0968-0004(98)01285-7
  42. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol. 2007;24(8):1596–99. https://doi.org/10.1093/molbev/msm092
  43. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;783–91. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  44. Henderson CF, Tilton EW. Tests with acaricides against the brown wheat mite. J Econ Entomol. 1955;48(2):157–61. https://doi.org/10.1093/jee/48.2.157
  45. Lichtenthaler HK. [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Packer L, Douce R, editors. Methods in enzymology. 148: Elsevier; 1987. p. 350–82. https://doi.org/10.1016/0076-6879(87)48036-1
  46. Gomez K, Gomez AA. Statistical procedures for agricultural research. New York: John Wiley and Sons; 1984
  47. Mehta P, Walia A, Chauhan A, Shirkot C. Plant growth promoting traits of phosphate-solubilizing rhizobacteria isolated from apple trees in trans Himalayan region of Himachal Pradesh. Arch Microbiol. 2013;195:357–69. https://doi.org/10.1007/s00203-013-0881-y
  48. Kumar A, Kumar A, Devi S, Patil S, Payal C, Negi S. Isolation, screening and characterization of bacteria from Rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Res Sci Technol. 2012;4(1):1–5.
  49. Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2002;99(10):7072–77. https://doi.org/10.1073/pnas.
  50. Sterniša M, ?argo M, Smole-Možina S. Spoilage bacteria Pseudomonas-production of hydrolytic enzymes and ability to grow at 5 C. Acta Period Technol. 2019(50):278–85. https://doi.org/10.2298/APT1950278S
  51. Meliani A, Bensoltane A, Benidire L, Oufdou K. Plant growth-promotion and IAA secretion with Pseudomonas fluorescens and Pseudomonas putida. Res Rev: J Bot Sci Rep. 2017;6(2):16–24.
  52. Lakshmi V, Kumari S, Singh A, Prabha C. Isolation and characterization of deleterious Pseudomonas aeruginosa KC1 from rhizospheric soils and its interaction with weed seedlings. J King Saud Univ Sci. 2015;27(2):113–19. https://doi.org/10.1016/j.jksus.2014.04.007
  53. Ibnsouda SK. Biocontrol potential of a Pseudomonas aeruginosa strain against Bactrocera oleae. Afr J Microbiol Res. 2012;6(26):5472–78. https://doi.org/10.5897/AJMR11.1598
  54. Saber FM, Abdelhafez AA, Hassan EA, Ramadan EM. Characterization of fluorescent pseudomonads isolates and their efficiency on the growth promotion of tomato plant. Ann Agric Sci. 2015;60(1):131–40. https://doi.org/10.1016/
  55. j.aoas.2015.04.007

Downloads

Download data is not yet available.