Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Assessing genetic variation and trait associations in cowpea (Vigna ungucuilata (L.) (Walp.) genotypes for yield optimization

DOI
https://doi.org/10.14719/pst.7070
Submitted
4 January 2025
Published
13-06-2025 — Updated on 01-07-2025
Versions

Abstract

The study was conducted at the Horticultural College and Research Station, Vegetable Science Department of TNAU, Coimbatore. Thirty cowpea genotypes, including 2 check varieties, were used to measure genetic variation, heritability and the genetic improvement across 13 key traits. The results suggested that for all traits, phenotypic variation exceeded genotypic variation, indicating that environmental factors played a dominant role in the observed variation. Genetic diversity was observed from the GCV values for several traits. These traits are associated with high heritability and significant genetic improvement, especially for characters such as pod weight, per plant pod yield and pod length, which are mainly controlled by additive genes; thus, they are suitable for use in breeding program to improve yield. The important trait in selecting high-yield cowpea varieties is shown by the strong positive genetic resemblance between the per pod seed number and per plant pod yield. PCA identified 5 main components that showed 77.53 % of the total variation. Traits with positive values in each component were considered the most important for yield, making them key factors for selecting high-yielding cowpea varieties.

References

  1. 1. da Costa AF, Silvo do Vale L, de Oliveira AB, de Brito Neto JF, Souto Ribeiro W, Cardoso GD. Evaluation of yield performance in cowpea genotypes (‘Vigna unguiculata’ (L.) Walp.). Aust J Crop Sci. 2017;11(3):308–12. https://doi.org/10.21475/ajcs.17.11.03.pne433
  2. 2. Johnson HW, Robinson H, Comstock R. Estimates of genetic and environmental variability in soybeans. Agron J. 1955;47(7):314–18. https://doi.org/10.2134/agronj1955.00021962004700070009x
  3. 3. Falconer DS. Introduction to quantitative genetics. New Delhi: Pearson Education India; 1996.
  4. 4. Harper D. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:4.
  5. 5. Elhaik E. Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Sci Rep. 2022;12(1):14683. https://doi.org/10.1038/s41598-022-14395-4
  6. 6. Hammer O, Harper DA. Past: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4(1):1.
  7. 7. Mohiddin S, Kerketta A, Bahadur V, Imtiaz M, Mohiddin SG. Evaluation of different Cowpea (Vigna unguiculata (L.) Walp.) varieties for growth and pod yield in Prayagraj Agro-climatic conditions. Pharma Innov J. 2022;11(6):1191–93.
  8. 8. Vinay K, Rao PJM, Kishore NS, Hari Y. Genetic variability studies for seed yield and yield component traits in cowpea [Vigna unguiculata (L) Walp.]. Elect J Genet Plant Breed. 2022;13(2):544–48.
  9. 9. Jivani LL, Khanpara S, Vachhani J, Kachhadia V. Genetic variability, heritability and genetic advance studies in vegetable cowpea [Vigna unguiculata (L) Walp.]. Elect J Genet Plant Breed. 2016;7(2):408–13. https://doi.org/10.5958/0975-928X.2016.00050.8
  10. 10. Devi SM, Jayamani P. Genetic variability, heritability, genetic advance studies in cowpea germplasm [Vigna unguiculata (L) Walp.]. Elect J Genet Plant Breed. 2018;9(2):476–81. https://doi.org/10.5958/0975-928X.2018.00058.3
  11. 11. Sapara G, Javia R, Pokar M. Genetic variability, heritability and genetic advance in vegetable cowpea [Vigna unguiculata (L) Walp]. 2014;9(2):326–29.
  12. 12. Sharma M, Sharma P, Sharma H, Meghawal DR. Genetic variability in cowpea [Vigna unguiculata (L) Walp.] Germplasm lines. J Pharmacogn Phytochem. 2017;6(4):1384–87. https://doi.org/10.20546/ijcmas.2017.606.092
  13. 13. Khandait R, Jain P, Prajapati S, Solanki P. Genetic variability studies of diverse cowpea (Vigna unguiculata L.) genotypes. 2016;6(2):114–22. https://doi.org/10.5958/2231-1750.2016.00017.2
  14. 14. Kalambe A, Wankhade M, Deshmukh J, Chavan B, Shinde A. Correlation studies in cowpea (Vigna unguiculata L.). J Pharmacogn Phytochem. 2019;8(3):321–23.
  15. 15. Diwaker P, Sharma M, Soni A, Diwaker A, Singh P. Character association and path coefficient analysis in Vegetable Cowpea [Vigna unguiculata (L.) Walp]. J Pharmacogn Phytochem. 2018;7(1):2289–93.
  16. 16. Baranda B, Sharma P, Meghawal DR. Correlation coefficient analysis for various quantitative traits in cowpea [Vigna unguiculata (L.) Walp] Genotypes under different environments (E1, E2, E3 and pooled basis). J Pharmacogn Phytochem 2017;6(5):1994–2001.
  17. 17. Chattopadhyay K, Nath D, Mohanta RL, Bhattacharyya S, Marndi BC, Nayak AK, et al. Diversity and validation of microsatellite markers in'Saltol'QTL region in contrasting rice genotypes for salt tolerance at the early vegetative stage. Aust J Crop Sci. 2014;8(3).
  18. 18. Patel UV, Parmar VK, Patel PB, Malviya AV. Correlation and path analysis study in cowpea (Vigna unguiculata (L.) Walp). Int J Sci Environ Technol. 2016;5(6):3897–904.
  19. 19. Selvakumar G, Ushakumari R. Association analysis in the interspecific crosses of Cowpea (Vigna unguiculata (L.) Walp.) and Yard long bean (Vigna unguiculata (L.) Walp. spp. sesquipedalis). Elect J Genet Plant Breed. 2013;4(4):1336–39.
  20. 20. Gixhari B, Pavelkova M, Ismaili H, Vrapi H, Jaupi A, Smykal P. Genetic diversity of Albanian pea (Pisum sativum L.) landraces assessed by morphological traits and molecular markers. 2014;50(2):177–84. https://doi.org/10.17221/227/2013-CJGPB
  21. 21. Vijayakumar E, Thangaraj K, Kalaimagal T, Vanniarajan C, Senthil N, Jeyakumar P. Multivariate analysis of 102 Indian cowpea (Vigna unguiculata (L.) Walp.) germplasm. Elect J Genet Plant Breed. 2020;11(1):176–83. https://doi.org/10.37992/2020.1101.031
  22. 22. Sharma HK, Sarkar M, Choudhary SB, Kumar AA, Maruthi RT, Mitra J, et al. Diversity analysis based on agro-morphological traits and microsatellite-based markers in global germplasm collections of roselle (Hibiscus sabdariffa L.). Ind Crops Prod. 2016;89:303–15. https://doi.org/10.1016/j.indcrop.2016.05.027

Downloads

Download data is not yet available.