Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 2 (2025)

A comprehensive analysis of the effects of balanced NPK fertilization on maize quality, nutrient uptake and soil sustainability using hierarchical cluster dendrogram techniques

DOI
https://doi.org/10.14719/pst.7282
Submitted
18 January 2025
Published
26-05-2025 — Updated on 10-06-2025
Versions

Abstract

In modern agriculture, fertilizer application is critical for improving crop yields and addressing soil nutrient deficiencies, yet it often presents environmental and sustainability challenges. This study investigated the effects of varying nitrogen (N), phosphorus (P) and potassium (K) fertilization levels on maize (Zea mays L.), focusing on quality, nutrient uptake and soil sustainability. Field experiments were conducted on Alfisols at the Zonal Agricultural Research Station, Bengaluru, during 2022-23 and 2023-24, utilizing Soil Test Crop Response (STCR) fertilization strategies. The objective was to evaluate maize yield, nutrient partitioning and soil nutrient dynamics under different NPK regimes. Structural improvements, including higher crude fibre content and reduced moisture levels, improved kernel and fodder integrity and storage potential. Nutrient uptake studies revealed that optimal fertilizer levels promoted nutrient assimilation during vegetative growth and efficient translocation to kernels in reproductive stages, leading to higher yields. Precision fertilization minimized nutrient wastage by aligning applications with crop demand, reducing environmental risks. This study emphasizes stage-specific nutrient management and balanced NPK fertilization to achieve improved maize quality, optimal nutrient use efficiency and sustainable soil health, providing critical insights for enhancing agricultural productivity while maintaining environmental stewardship.

References

  1. 1. Shiferaw B, Prasanna BM, Hellin J, Bänziger M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security. 2011;3:307–27. https://doi.org/10.1007/s12571-011-0140-5
  2. 2. Maitra S, Singh V. Emerging trends of maize biorefineries in the 21st century: Scientific and technological advancements in biofuel and bio-sustainable market. J Cereal Sci. 2021;101:103272. https://doi.org/10.1016/j.jcs.2021.103272
  3. 3. Khare N, Khare P, Singh S. Molecular and physiological concepts: Macronutrients in crop plant growth and development. In: Agricultural crop improvement. CRC Press; 2025. p. 148–64. https://doi.org/10.1201/9781032630366-11
  4. 4. Shah F, Wu W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability. 2019;11(5):1485. https://doi.org/10.3390/su11051485
  5. 5. Mustafa G, Hayat N, Alotaibi BA. How and why to prevent over fertilization to get sustainable crop production. In: Sustainable plant nutrition. Academic Press; 2023. p. 339-54. https://doi.org/10.1016/B978-0-443-18675-2.00019-5
  6. 6. El Gayar A. A study on: Nutrients in sustainable cropping systems. AAHE-144; 2021.
  7. 7. Rashmi I, Shirale A, Kartikha KS, Shinogi KC, Meena BP, Kala S. Leaching of plant nutrients from agricultural lands. In: Essential plant nutrients: Uptake, use efficiency, and management. 2017. p. 465-89. https://doi.org/10.1007/978-3-319-58841-4_19
  8. 8. Aryal B, Gurung R, Camargo AF, Fongaro G, Treichel H, Mainali B, et al. Nitrous oxide emission in altered nitrogen cycle and implications for climate change. Environ Pollut. 2022;314:120272. https://doi.org/10.1016/j.envpol.2022.120272
  9. 9. Yimer T, Abera G, Beyene S, Ravensbergen APP, Ukato A, Rasche F. Optimizing fertilization schemes to narrow the maize yield gap in smallholder farming systems in southern Ethiopia. Heliyon. 2024;10(13):e33926. https://doi.org/10.1016/j.heliyon.2024.e33926
  10. 10. Zulfiqar F, Navarro M, Ashraf M, Akram NA, Munné-Bosch S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019;289:110270. https://doi.org/10.1016/j.plantsci.2019.110270
  11. 11. Raza I, Zubair M, Zaib M, Khalil MH, Haidar A, Sikandar A, et al. Precision nutrient application techniques to improve soil fertility and crop yield: A review with future prospect. Int Res J Educ Technol. 2023;5(8).
  12. 12. Yadav MR, Kumar R, Parihar CM, Yadav RK, Jat SL, Ram H, et al. Strategies for improving nitrogen use efficiency: A review. Agric Rev. 2017;38(1):29-40. https://doi.org/10.18805/ag.v0iOF.7306
  13. 13. Ramamoorthy B, Narasimham RL, Dinesh RS. Fertilizer application for specific yield targets on Sonora 64 (wheat). Indian Farming. 1967;17:43-5.
  14. 14. Subbiah BV, Asija GL. A rapid procedure for estimation of available nitrogen in soils. Curr Sci. 1956;25:259-60.
  15. 15. Bray RH, Kurtz LT. Determination of total, organic and available phosphorus in soil. Soil Sci. 1945;9:39-46. https://doi.org/10.1097/00010694-194501000-00006
  16. 16. Page AL, Miller RH, Kenay R. Methods of Soil Analysis Part-2. Soil Sci Soc Am. Madison, Wisconsin, USA; 1982.
  17. 17. Piper CS. Soil and plant analysis. Bombay: Hands Publishers; 1966. p. 137-53.
  18. 18. Jackson ML. Soil Chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd.; 1973. 498 p.
  19. 19. AOAC. Official Methods of Analysis of the Association of Official Agricultural Chemists. 10th ed. Washington DC; 1965. p. 744-5.
  20. 20. ISI. Method of Tests for Animal Feeds and Feeding Stuffs: 7874 Part 1. Minerals and Trace Element. New Delhi: Indian Standards Institution, Manak Bhawan, Bahadur Shah Jafar Marg; 1975.
  21. 21. Mahadevan SA. Laboratory Manual for Nutrition Research. New Delhi: Vikash Publishing House Pvt. Ltd.; 1965. p. 56-8.
  22. 22. Igbabul B, Shember J, Amove J. Physicochemical, microbiological and sensory evaluation of yoghurt sold in Marurdi metropolis. Afr J Food Sci Technol. 2014;5:129–35.
  23. 23. Kumawat GL. Impact of irrigation methods and nitrogen application on yield and nitrogen use efficiency of winter maize [Doctoral dissertation]. RPCAU, Pusa; 2023.
  24. 24. Gastal F, Lemaire G, Durand JL, Louarn G. Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency. In: Crop physiology. Academic Press; 2015. p. 161-206. https://doi.org/10.1016/B978-0-12-417104-6.00008-X
  25. 25. Henningsen JN, Görlach BM, Fernández V, Dölger JL, Buhk A, Mühling KH. Foliar P application cannot fully restore photosynthetic capacity, P nutrient status, and growth of P deficient maize (Zea mays L.). Plants. 2022;11(21):2986. https://doi.org/10.3390/plants11212986
  26. 26. Hopkins BG, Hansen NC. Phosphorus management in high‐yield systems. J Environ Qual. 2019;48(5):1265-80. https://doi.org/10.2134/jeq2019.03.0130
  27. 27. Brouder SM, Volenec JJ, Murrell TS. The potassium cycle and its relationship to recommendation development. In: Improving potassium recommendations for agricultural crops. Springer International Publishing; 2021. p. 1–46. https://doi.org/10.1007/978-3-030-59197-7_1
  28. 28. DAS D, Sahoo J, Raza MB, Barman M, DAS R. Ongoing soil potassium depletion under intensive cropping in India and probable mitigation strategies: A review. Agron Sustain Dev. 2022;42(1):4. https://doi.org/10.1007/s13593-021-00728-6
  29. 29. Priya E, Sarkar S, Maji PK. A review on slow-release fertilizer: Nutrient release mechanism and agricultural sustainability. J Environ Chem Eng. 2024;12(4):113211. https://doi.org/10.1016/j.jece.2024.113211
  30. 30. Sattar A, Naveed M, Ali M, Zahir ZA, Nadeem SM, Yaseen M, et al. Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Appl Soil Ecol. 2019;133:146-59. https://doi.org/10.1016/j.apsoil.2018.09.012
  31. 31. Miyagi A, Takahashi H, Takahara K, Hirabayashi T, Nishimura Y, Tezuka T, et al. Principal component and hierarchical clustering analysis of metabolites in destructive weeds; polygonaceous plants. Metabolomics. 2010;6:146-55. https://doi.org/10.1007/s11306-009-0186-y
  32. 32. Zhang X, Zhan Y, Zhang H, Wang R, Tao X, Zhang L, et al. Inoculation of phosphate-solubilizing bacteria (Bacillus) regulates microbial interaction to improve phosphorus fractions mobilization during kitchen waste composting. Bioresour Technol. 2021;340:125714. https://doi.org/10.1016/j.biortech.2021.125714
  33. 33. Vadde KK, Wang J, Cao L, Yuan T, McCarthy AJ, Sekar R. Assessment of water quality and identification of pollution risk locations in Tiaoxi River (Taihu Watershed), China. Water. 2018;10(2):183. https://doi.org/10.3390/w10020183
  34. 34. Khaledian Y, Kiani F, Ebrahimi S, Brevik EC, Aitkenhead‐Peterson J. Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degrad Dev. 2017;28(1):128-41. https://doi.org/10.1002/ldr.2541
  35. 35. Ray K, Banerjee H, Dutta S, Sarkar S, Murrell TS, Singh VK, et al. Macronutrient management effects on nutrient accumulation, partitioning, remobilization, and yield of hybrid maize cultivars. Front Plant Sci. 2020;11:1307. https://doi.org/10.3389/fpls.2020.01307
  36. 36. Zhiipao RR, Pooniya V, Biswakarma N, Kumar D, Shivay YS, DASs A, et al. Timely sown maize hybrids improve the post-anthesis dry matter accumulation, nutrient acquisition and crop productivity. Sci Rep. 2023;13(1):1688. https://doi.org/10.1038/s41598-023-28224-9
  37. 37. Kirkby EA, Nikolic M, White PJ, Xu G. Mineral nutrition, yield, and source–sink relationships. In: Marschner’s mineral nutrition of plants. Academic Press; 2023. p. 131-200. https://doi.org/10.1016/B978-0-12-819773-8.00015-0
  38. 38. Ampong K, Penn CJ, Camberato JJ. The timing of phosphorus availability to corn: What growth stages are most critical for maximizing yield. Agronomy. 2024;14(11):2731. https://doi.org/10.3390/agronomy14112731
  39. 39. Hammad HM, Abbas F, Ahmad A, Bakhat HF, Farhad W, Wilkerson CJ, et al. Predicting kernel growth of maize under controlled water and nitrogen applications. Int J Plant Prod. 2020;14:609-20. https://doi.org/10.1007/s42106-020-00110-8
  40. 40. Blandino M, Battisti M, Vanara F, Reyneri A. The synergistic effect of nitrogen and phosphorus starter fertilization sub-surface banded at sowing on the early vigor, grain yield and quality of maize. Eur J Agron. 2022;137:126509. https://doi.org/10.1016/j.eja.2022.126509
  41. 41. Karthika KS, Rashmi I, Parvathi MS. Biological functions, uptake and transport of essential nutrients in relation to plant growth. In: Plant nutrients and abiotic stress tolerance. Singapore: Springer; 2018. p. 1-49. https://doi.org/10.1007/978-981-10-9044-8_1
  42. 42. Ochieng’ IO, Gitari HI, Mochoge B, Rezaei-Chiyaneh E, Gweyi-Onyango JP. Optimizing maize yield, nitrogen efficacy and grain protein content under different N forms and rates. J Soil Sci Plant Nutr. 2021;21(3):1867-80. https://doi.org/10.1007/s42729-021-00486-0
  43. 43. Yang F, He B, Zhang G. Enhanced maize yield and water-use efficiency via film mulched ridge–furrow tillage with straw incorporation in semiarid regions. Arch Agron Soil Sci. 2022;68(13):1796-809. https://doi.org/10.1080/03650340.2021.1928647
  44. 44. Thakur A, Sharma RP, Sankhyan NK, Kumar R. Maize grain quality as influenced by 46 years’ continuous application of fertilizers, farmyard manure (FYM), and lime in an Alfisol of North-western Himalayas. Commun Soil Sci Plant Anal. 2021;52(2):149-60. https://doi.org/10.1080/00103624.2020.1854289
  45. 45. Liu J, Liang B, Liu S, Zhang G, Yuan M. Effects of long-term fertilization on grain quality of summer maize. Adv J Food Sci Technol. 2016;11(1):33-9. https://doi.org/10.19026/ajfst.11.2350
  46. 46. Fadlalla HA, Abukhlaif HAA, Mohamed SS. Effects of chemical and bio-fertilizers on yield, yield components and grain quality of maize (Zea mays L.). Afr J Agric Res. 2016;11(45):4654-60. https://doi.org/10.5897/AJAR2016.11619
  47. 47. Verma G, Sharma RP, Sharma SP, Subehia SK, Shambhavi S. Changes in soil fertility status of maize-wheat system due to long-term use of chemical fertilizers and amendments in an Alfisol. Plant Soil Environ. 2012;58:529-33. https://doi.org/10.17221/133/2012-PSE
  48. 48. Baghdadi A, Halim RA, Ghasemzadeh A, Ramlan MF, Sakimin SZ. Impact of organic and inorganic fertilizers on the yield and quality of silage corn intercropped with soybean. Peer J. 2018;6:e5280. https://doi.org/10.7717/peerj.5280
  49. 49. Singh K, Joshi YP, Chandra H, Singh DK, Singh R, Kumar M. Effect of integrated nutrient management on growth, productivity and quality of sweet sorghum (Sorghum bicolor). Indian J Agron. 2015;60(2):291-6. https://doi.org/10.59797/ija.v60i2.4452
  50. 50. Rangaiah KM, Nagaraju B, Kasturappa G, Nagendrachari AN, Kadappa BP, Narayanaswamy UKS, et al. Inductive cum targeted yield model-based integrated fertilizer prescription for sweet corn (Zea mays L. Saccharata) on Alfisols of Southern India. PLoS One. 2024;19(8):e0307168. https://doi.org/10.1371/journal.pone.0307168

Downloads

Download data is not yet available.