Research Articles
Vol. 12 No. 3 (2025)
Sustainable mosquito control: A tool in the fight against Aedes aegypti using Flemingia wightiana
Department of Life Sciences, CHRIST University, Bengaluru 560 029, Karnataka, India
Department of Life Sciences, CHRIST University, Bengaluru 560 029, Karnataka, India
Abstract
Mosquito-borne diseases, particularly those transmitted by Aedes aegypti, have been proven to be a global health challenge. A. aegypti, a major vector of Zika virus, Dengue virus, Chikungunya, is traditionally controlled through synthetic insecticides. However, the factor of environmental issues and rising insecticide resistant breeds have prompted the exploration of eco-friendly and sustainable alternatives. Here, we attempt to use the leaf extract of Flemingia wightiana to produce silver nanoparticles (FWAgNP). The construct of AgNPs was first indicated by UV-Vis spectroscopy, with a peak at 461 nm. NP was then characterized by SEM, EDX and functional groups were analyzed using FTIR spectroscopy. Safety assessments of synthesized NP were carried out on Oreochromis niloticus. Percentage mortality was studied on A. Aegypti with both test samples, FWAgNP and FWME. FWAgNP were found to be effective; the lowest percentage mortality of 70 % was recorded for forth instar larvae and 100 % mortality was observed in the first and second instar larvae. Oxidative stress assays such as AChe, SOD, CAT, GSH and GST were carried out. SOD, CAT and GSH showed significant elevated levels. GST and AChe levels reduced as the concentration increased, indicating the role of test samples in oxidative stress. Antiviral assay was conducted to check the effect of AgNPs in inhibiting the growth and infection of Zika virus (ZIKV) on Vero cells. The percentage inhibition property of AgNP was found to be 25 %. In conclusion, the developed FWAgNPs have significant potential in the control of vectors and a limited inhibitory activity on Zika virus.
References
- 1. World Health Organization (WHO). Vector-borne diseases [Internet]. 2020 [cited 2024 Sep 7]. Available from: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
- 2. Lee H, Halverson S, Ezinwa N. Mosquito-borne diseases. Prim Care. 2018;45(3):393–407. https://doi.org/10.1016/j.pop.2018.05.001
- 3. Kovats RS, Campbell-Lendrum D, Matthies F. Climate change and human health: estimating avoidable deaths and disease. Risk Anal. 2005;25(6):1409–18. https://doi.org/10.1111/j.1539-6924.2005.00688.x
- 4. Gul S, Ibrahim S, Wasif N, Zafar A, Syed R. Mosquito repellents: killing mosquitoes or yourselves. J Sci Innov Res. 2013;2(6):1052–57.
- 5. Govindarajan M, Jebanesan A, Reetha D. Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito, Culex quinquefasciatus Say. Trop Biomed. 2005;22(1):1–3.
- 6. Bisset J, Rodriguez MM, Fernandez D. Selection of insensitive acetylcholinesterase as a resistance mechanism in Aedes aegypti (Diptera: Culicidae) from Santiago de Cuba. J Med Entomol. 2006;43(6):1185–89. https://doi.org/10.1093/jmedent/43.6.1185
- 7. Borase HP, Patil CD, Salunkhe RB, Narkhede CP, Salunke BK, Patil SV. Phyto-synthesized silver nanoparticles: A potent mosquito biolarvicidal agent. J Nanomedine Biotherapeutic Discov. 2013;3(1):1–7. https://doi.org/10.4172/2155-983X.1000111
- 8. Priyadarshini KA, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res. 2012;111(3):997–1006. https://doi.org/10.1007/s00436-012-2924-8
- 9. Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis and dengue. Vector Borne Zoonotic Dis. 2012;12(3):262–68. https://doi.org/10.1089/vbz.2011.0661
- 10. Poopathi S, De Britto LJ, Praba VL, Mani C, Praveen M. Synthesis of silver nanoparticles from Azadirachta indica-a most effective method for mosquito control. Environ Sci Pollut Res Int. 2015;22(4):2956–63. https://doi.org/10.1007/s11356-014-3560-x
- 11. Afsheen S, Shahzadi K, Iqbal T, Zafar M, Saleem R, Sayed MA, et al. Achyranthes aspera–based biosynthesis of silver nanoparticles to investigate the efficacy against mosquito larvae. Biomass Convers Biorefin. 2024;14(12):13323–32. https://doi.org/10.1007/s13399-022-03485-y
- 12. Gavade SK, Surveswaran S, van der Maesen LJ, Lekhak MM. Taxonomic revision and molecular phylogeny of Flemingia subgenus Rhynchosioides (Leguminosae). Blumea. 2019;64(3):253–71. https://doi.org/10.3767/blumea.2019.64.03.06
- 13. Tambun R, Alexander V, Ginting Y. Performance comparison of maceration method, soxhletation method and microwave-assisted extraction in extracting active compounds from soursop leaves Annona muricata): A review. IOP Conf Ser Mater Sci Eng. 2021;1122(1):012095. https://doi.org/10.1088/1757-899X/1122/1/012095
- 14. Reddy NV, Satyanarayana BM, Sivasankar S, Pragathi D, Subbaiah KV, Vijaya T. Eco-friendly synthesis of silver nanoparticles using leaf extract of Flemingia wightiana: spectral characterization, antioxidant and anticancer activity studies. Appl Sci. 2020;2(5):1–10. https://doi.org/10.1007/s42452-020-2702-7
- 15. Netala VR, Kotakadi VS, Domdi L, Gaddam SA, Bobbu P, Venkata SK, et al. Biogenic silver nanoparticles: efficient and effective antifungal agents. Appl Nanosci. 2016;6(4):475–84. https://doi.org/10.1007/s13204-015-0463-1
- 16. Shafay SEL, El-Sheekh M, Bases E, El-Shenody R. Antioxidant, antidiabetic, anti-inflammatory and anticancer potential of some seaweed extracts. Food Sci Technol. 2021;41(Suppl 1):92–99. https://doi.org/10.1590/fst.20521
- 17. Mole S, Waterman PG. Light-induced variation in phenolic levels in foliage of rain-forest plants: II. Potential significance to herbivores. J Chem Ecol. 1988;14(1):23–34. https://doi.org/10.1007/BF01022528
- 18. Mohy El-Din SM, El-Ahwany AM. Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J Taibah Univ Sci. 2016;10(4):471–84. https://doi.org/10.1016/j.jtusci.2015.06.004
- 19. Scaria SS, Sebastian JK. Novel biocompatible zinc oxide nanoparticle synthesis using Quassia indica leaf extract and evaluation of its photocatalytic, antimicrobial and cytotoxic potentials. Biomass Convers Biorefin. 2023. https://doi.org/10.1007/s13399-023-04989-x
- 20. Hamelian M, Zangeneh MM, Amisama A, Varmira K, Veisi H. Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Appl Organomet Chem. 2018;32(9):e4458. https://doi.org/10.1002/aoc.4458
- 21. Gomaa M, Al-Badaani AA, Hifney AF, Adam MS. Utilization of cellulose and ulvan from the green seaweed Ulva lactuca in the development of composite edible films with natural antioxidant properties. J Appl Phycol. 2022;34(5):2615–26. https://doi.org/10.1007/s10811-022-02786-z
- 22. Nazarudin MF, Yasin ISM, Mazli NAIN, Saadi AR, Azizee MHS, Nooraini MA, et al. Preliminary screening of antioxidant and cytotoxic potential of green seaweed, Halimeda opuntia (Linnaeus) Lamouroux. Saudi J Biol Sci. 2022;29(4):2698–705. https://doi.org/10.1016/j.sjbs.2021.12.066
- 23. George JA, Paari KA. Bacillus velezensis-synthesized silver nanoparticles and its efficacy in controlling the Aedes aegypti. Bull Mater Sci. 2023;46(3). https://doi.org/10.1007/s12034-023-03023-0
- 24. Sanchez-Muros MJ, Sanchez B, Barroso FG, Garcia-Mesa S, Rufino-Palomares EE, Lupianez JA, et al. Effects of culture densities on feed demand, behavioural tests and on the hepatic and cerebral oxidative status in tilapia (Oreochromis sp.). Appl Anim Behav Sci. 2016;185:137–45. https://doi.org/10.1016/j.applanim.2016.10.009
- 25. Taguchi R, Ikezawa H. Properties of bovine erythrocyte acetylcholinesterase solubilized by phosphatidylinositol-specific phospholipase C1. J Biochem. 1987;102(4):803–11. https://doi.org/10.1093/oxfordjournals.jbchem.a122119
- 26. Masayasu M, Hiroshi Y. A simplified assay method of superoxide dismutase activity for clinical use. Clin Chim Acta. 1979;92(3):337–42. https://doi.org/10.1016/0009-8981(79)90211-0
- 27. Iwase T, Tajima A, Sugimoto S, Okuda KI, Hironaka I, Kamata Y, et al. A simple assay for measuring catalase activity: A visual approach. Sci Rep. 2013;3(1):3081. https://doi.org/10.1038/srep03081
- 28. Chien C, Dauterman WC. Studies on glutathione S-transferase in Helicoverpa (= Heliothis) zea. Insect Biochem. 1991;21(8):857–64. https://doi.org/10.1016/0020-1790(91)90092-S
- 29. Bergmeyer HU. Methods of Enzymatic Analysis I. 2nd ed. New York: Academic Press; 1974 [cited 2024 Sep 9].
- 30. Dantas PC, Serrao JE, Santos HC, Carvalho GA. Anatomy and histology of the alimentary canal of larvae and adults of Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae). Arthropod Struct Dev. 2021;60(101000):101000. https://doi.org/10.1016/j.asd.2020.101000
- 31. da Silva TF, Ferraz AC, Almeida LT, da Silva Caetano CC, Camini FC, Lima RL, et al. Antiviral effect of silymarin against Zika virus in vitro. Acta Trop. 2020;211(105613):105613. https://doi.org/10.1016/j.actatropica.2020.105613
- 32. Priya ML, Naidu CV, Penchalaneni J. Antioxidant and anti-inflammatory properties of Flemingia wightiana ethanolic extract. J Adv Sci Res. 2019;10(04 Suppl 2):339–44.
- 33. Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA. Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crops Prod. 2013;41:235–40. https://doi.org/10.1016/j.indcrop.2012.04.017
- 34. Netala VR, Kotakadi VS, Nagam V, Bobbu P, Ghosh SB, Tartte V. First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity. Appl Nanosci. 2015;5(7):801–07. https://doi.org/10.1007/s13204-014-0374-6
- 35. Puthukulangara JJ, Kadanthottu SJ. Photocatalytic and antioxidant potential of silver nanoparticles biosynthesized using Artemisia stelleriana leaf extracts. Water Pract Technol. 2023;18(11):2664–74. https://doi.org/10.2166/wpt.2023.176
- 36. Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F. The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors. 2022;48(3):611–33. https://doi.org/10.1002/biof.1831
- 37. Kikon L, Sumedha NC, Rajaganesh K, Chamuah JK, Rupreo V, Baranitharan M, et al. Green synthesis of silver nanoparticles from Parkia speciosa seeds and pods extract: characterization and antioxidant properties for biomedical and nanotechnological applications. Biochem Cell Arch. 2024;24(1). https://doi.org/10.51470/bca.2024.24.1.405
- 38. Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, et al. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol Sci. 2017;18(1):96. https://doi.org/10.3390/ijms18010096
- 39. Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: classification, natural sources, activity/capacity measurements and usefulness for the synthesis of nanoparticles. Mater. 2021;14(15):4135. https://doi.org/10.3390/ma14154135
- 40. Phrompanya P, Panase P, Saenphet S, Saenphet K. Histopathology and oxidative stress responses of Nile tilapia Oreochromis niloticus exposed to temperature shocks. Fish Sci. 2021;87(4):491–502. https://doi.org/10.1007/s12562-021-01511-y
- 41. Bardhan A, Abraham TJ, Singha J, Sar TK, Rajisha R, Krishna EK, et al. Histopathological aberrations and oxidative stress responses in Nile tilapia Oreochromis niloticus as influenced by dietary florfenicol and its metabolites. Aquac. 2022;559:738447. https://doi.org/10.1016/j.aquaculture.2022.738447
- 42. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol Res. 2012;111(2):555–62. https://doi.org/10.1007/s00436-012-2867-0
- 43. Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Vijayakumar V, Selvam S, et al. Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac J Trop Med. 2011;4(10):799–803. https://doi.org/10.1016/S1995-7645(11)60197-1
- 44. Morejon B, Pilaquinga F, Domenech F, Ganchala D, Debut A, Neira M. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) to control Aedes aegypti L. (Diptera: Culicidae). J Nanotechnol. 2018;2018:1–8. https://doi.org/10.1155/2018/6917938
- 45. Latorre M, Troncoso R, Uauy R. Biological aspects of copper. In: Kerkar N, Roberts EA, editors. Clinical and Translational Perspectives on Wilson Disease. Elsevier; 2019. p. 25–31. https://doi.org/10.1016/B978-0-12-810532-0.00004-5
- 46. Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One. 2013;8(1):e53186. https://doi.org/10.1371/journal.pone.0053186
- 47. Pathipati UR, Kanuparthi PL. Silver nanoparticles for insect control: bioassays and mechanisms. In: Abd-Elsalam KA, editor. Silver Nanomaterials for Agri-Food Applications. Elsevier; 2021. p. 471–94. https://doi.org/10.1016/B978-0-12-823528-7.00007-X
- 48. Al-Solami HM. Larvicidal activity of plant extracts by inhibition of detoxification enzymes in Culex pipiens. J King Saud Univ Sci. 2021;33(3):101371. https://doi.org/10.1016/j.jksus.2021.101371
- 49. Chintalchere JM, Dar MA, Shaha C, Pandit RS. Impact of essential oils on Musca domestica larvae: oxidative stress and antioxidant responses. Int J Trop Insect Sci. 2021;41(1):821–30. https://doi.org/10.1007/s42690-020-00272-y
- 50. Sheeja CC, Anusri A, Levna C, Aneesh PM, Lekha D. MoS₂ nanoparticles induce behavioural alteration and oxidative stress-mediated cellular toxicity in the social insect Oecophylla smaragdina (Asian weaver ant). J Hazard Mater. 2020;385(121624):121624. https://doi.org/10.1016/j.jhazmat.2019.121624
- 51. Chacko L, Poyyakkara A, Kumar VBS, Aneesh PM. MoS₂-ZnO nanocomposites as highly functional agents for anti-angiogenic and anti-cancer theranostics. J Mater Chem B Mater Biol Med. 2018;6(19):3048–57. https://doi.org/10.1039/C8TB00142A
- 52. Aswin Jeno JG, Nakkeeran E. Histological changes in the Dengue vector, Aedes aegypti (Diptera: Culicidae) larvae treated with neem oil loaded niosomes. J Asia Pac Entomol. 2022;25(3):101943. https://doi.org/10.1016/j.aspen.2022.101943
- 53. Benelli G. Mode of action of nanoparticles against insects. Environ Sci Pollut Res Int. 2018;25(13):12329–41. https://doi.org/10.1007/s11356-018-1850-4
- 54. Kalimuthu K, Panneerselvam C, Chou C, Tseng LC, Murugan K, Tsai KH, et al. Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf Environ Prot. 2017;109:82–96. https://doi.org/10.1016/j.psep.2017.03.027
- 55. Deng YQ, Zhang NN, Li CF, Tian M, Hao JN, Xie XP, et al. Adenosine analog NITD008 is a potent inhibitor of Zika virus. Open Forum Infect Dis. 2016;3(4):ofw175. https://doi.org/10.1093/ofid/ofw175
- 56. Antunes NM. Fighting dengue and Zika using novel glycodendrimer-encapsulated metal nanoparticles as viral inhibitors. Masters [thesis]. Portugal: Universidade da Madeira; 2021. Available from: https://www.proquest.com/openview/d8baffcb954fdf22d21e1f6273dd17ee/1?cbl=2026366&diss=y&pq-origsite=gscholar
- 57. Pacho MN, Pugni EN, Diaz Sierra JB, Morell ML, Sepulveda CS, Damonte EB, et al. Antiviral activity against Zika virus of a new formulation of curcumin in poly lactic-co-glycolic acid nanoparticles. J Pharm Pharmacol. 2021;73(3):357–65. https://doi.org/10.1093/jpp/rgaa045
- 58. Steinmetz M, Lima D, Viana AG, Fujiwara ST, Pessoa CA, Etto RM, et al. A sensitive label-free impedimetric DNA biosensor based on silsesquioxane-functionalized gold nanoparticles for Zika Virus detection. Biosens Bioelectron. 2019;141(111351):111351. https://doi.org/10.1016/j.bios.2019.111351
- 59. Pattnaik A, Sahoo BR, Struble LR, Borgstahl GEO, Zhou Y, Franco R, et al. A ferritin nanoparticle-based Zika virus vaccine candidate induces robust humoral and cellular immune responses and protects mice from lethal virus challenge. Vaccines. 2023;11(4):821. https://doi.org/10.3390/vaccines11040821
- 60. Lo TH, Wu ZY, Chen SY, Meng FY, Chou PT, Wang CM, et al. Curcumin-loaded mesoporous silica nanoparticles with dual-imaging and temperature control inhibits the infection of Zika virus. Microporous Mesoporous Mater. 2021;314(110886):110886. https://doi.org/10.1016/j.micromeso.2021.110886
- 61. Cajigas S, Alzate D, Orozco J. Gold nanoparticle/DNA-based nanobioconjugate for electrochemical detection of Zika virus. Mikrochim Acta. 2020;187(11):594. https://doi.org/10.1007/s00604-020-04568-1
- 62. Rong H, Qi M, Pan J, Sun Y, Gao J, Zhang X, et al. Self-assembling nanovaccine confers complete protection against the Zika virus without causing antibody-dependent enhancement. Front Immunol. 2022;13:905431. https://doi.org/10.3389/fimmu.2022.905431
Downloads
Download data is not yet available.