Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Potential nano strategies in insect pest management: synthesis, applications and plant interactions

DOI
https://doi.org/10.14719/pst.7294
Submitted
19 January 2025
Published
13-07-2025 — Updated on 21-07-2025
Versions

Abstract

Global crop production is significantly affected by biotic stress, typically managed with conventional chemical agents. However, these methods can have detrimental effects such as the development of resistance, pest resurgence, unwanted effects on human health and environment. Nanotechnology offers an alternative approach to crop pest management that can help alleviate these issues. It is a multidisciplinary strategy for plant protection that includes nano-based pesticide formulations and nano carrier based biopesticides. Nanoparticles have distinct physical and chemical characteristics due to their tiny size, measured in nanometers. Various nanoparticles, including polymeric, metal, metal oxides and silica nanoparticles have been synthesized and utilized to combat various insect pests and aid in pest control. Nano silica (SiO2) and other metal oxide nanoparticles like silver (Ag), copper (CuO), titanium (TiO2), zinc oxide (ZnO), gold (Au) and aluminum (Al2O3) have been found to be effective against stored pests and crop pests, as well. However, more studies are needed in the future to understand how these particles affect non-target species that coexist in the same habitat as the target species. While nanoparticles offer promising solutions for pest management, their potential risks such as toxicity to beneficial organisms, environmental persistence, regulatory challenges and high production costs must be addressed in the future by developing eco-friendly, biodegradable formulations and establishing regulatory frameworks to ensure their safe and sustainable application. This review explores the effectiveness of nanoparticles and nano-based formulations in managing insect pests and also outlines future research directions on the impact of nanoparticles on beneficial fauna.

References

  1. 1. Hasan S. A review on nanoparticles: their synthesis and types. Res J Recent Sci. 2015;2277:2502.
  2. 2. Mousavi SR, Rezaei M. Nanotechnology in agriculture and food production, J Appl Environ Biol Sci. 2011;1:414–19.
  3. 3. Rathore A, Hasan W, NM R, Pujar K, Singh R, Panotra N, et al. Nanotech for crop protection: utilizing Nanoparticles for targeted pesticide delivery. Uttar Pradesh J Zool. 2024;45(6):46–71. https://doi.org/10.56557/upjoz/2024/v45i63950
  4. 4. Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, et al. Budding trends in integrated pest management using advanced micro- and nano-materials: challenges and perspectives. J Environ Manage. 2016;184:157–69. https://doi.org/10.1016/j.jenvman.2016.09.071
  5. 5. Marousek J, Marouskova A, Periakaruppan R, Gokul GM, Anbukumaran A, Bohata A, et al. Silica nanoparticles from coir pith synthesized by the acidic sol-gel method improve germination economics. Polym. 2022;14(266). https://doi.org/10.3390/polym14020266
  6. 6. Ray MK, Mishra AK, Mohanta YK, Mahanta S, Chakrabartty I, Kungwani NA, et al. Nanotechnology as a promising tool against phytopathogens: A futuristic approach to agriculture. Agric. 2023;13:1856. https://doi.org/10.3390/agriculture13091856
  7. 7. Vinutha JS, Bhagat D, Bakthavatsalam N. Nanotechnology in the management of polyphagous pest Helicoverpa armigera. J Acad Indus Res. 2013;1:606–08.
  8. 8. De A, Bose R, Kumar A, Mozumdar S, De A, Bose R, et al. Management of insect pests using nanotechnology: modern approaches. In: Targeted delivery of pesticides using biodegradable polymeric nanoparticles. New Delhi: Springer; 2014. p. 29–33. https://doi.org/10.1007/978-81-322-1689-6
  9. 9. Wang L, Ning C, Pan T, Cai K. Role of silica nanoparticles in abiotic and biotic stress tolerance in plants: A review. Int J Mol Sci. 2022;23:1947. https://doi.org/10.3390/ijms23041947
  10. 10. Riseh RS, Hassanisaadi M, Vatankhah M, Soroush F, Varma RS. Nanomicroencapsulation of plant biocontrol agents by chitosan, alginate and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int J Biol Macromol. 2022;222:1589–604. https://doi.org/10.1016/j.ijbiomac.2022.09.278
  11. 11. Sobral MCM, Martins IM, Sobral AJFN. Role of chitosan and chitosan-based nanoparticles against heavy metal stress in plants. In: Kumar S, Madihally SV, editors. Role of Chitosan and Chitosan-Based Nanomaterials in Plant Sciences. Elsevier; 2022. p. 273–96. https://doi.org/10.1016/B978-0-323-85391-0.00011-3
  12. 12. Benelli G. Mode of action of nanoparticles against insects. Environ Sci Pollut Res. 2018;25:12329–41. https://doi.org/10.1007/s11356-018-1850-4
  13. 13. Worrall EA, Hamid A, Mody KT, Mitter N, Pappu HR. Nanotechnology for plant disease management. Agron. 2018;8 (12):285. https://doi.org/10.3390/agronomy8120285
  14. 14. Iavicoli I, Leso V, Beezhold DH, Shvedova AA. Nanotechnology in agriculture: opportunities, toxicological implications and occupational risks. Toxicol Appl Pharmacol. 2017;329:96–111. https://doi.org/10.1016/j.taap.2017.05.025
  15. 15. Sahayaraj K. Nanotechnology and plant biopesticides: An overview. In: Singh D, editor. Advances in Plant Biopesticides. New Delhi: Springer; 2014. p. 279–93. https://doi.org/10.1007/978-81-322-2006-0_14
  16. 16. Kah M, Kookana RS, Gogos A, Bucheli TD. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol. 2018;13:677–84. https://doi.org/10.1038/s41565-018-0131-1
  17. 17. Altammar KA. A review on nanoparticles: characteristics, synthesis, applications and challenges. Front Microbiol. 2023;14:1155622. https://doi.org10.3389/fmicb.2023.1155622
  18. 18. Wirunchit S, Gansa P, Koetniyom W. Synthesis of ZnO nanoparticles by Ball-milling process for biological applications. Mater Today Proc. 2021;47:3554–59. https://doi.org/10.1016/j.matpr.2021.03.559
  19. 19. Sahoo M, Vishwakarma S, Panigrahi C, Kumar J. Nanotechnology: current applications and future scope in food. Food Front. 2021;2(1):3–22. https://doi.org/10.1002/fft2.58
  20. 20. Patil N, Bhaskar R, Vyavhare V, Dhadge R, Khaire V, Patil Y. Overview on methods of synthesis of nanoparticles. Int J Curr Pharm Res. 2021;13:11–16.
  21. 21. Tripathi S, Mahra S, Tiwari K, Rana S, Tripathi DK, Sharma S, et al. Recent advances and perspectives of nanomaterials in agricultural management and associated environmental risk: A review. Nanomater. 2023;13:1604. https://doi.org/10.3390/nano13101604
  22. 22. Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van Duyne RP. Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B. 1999;103:3854–63. https://doi.org/10.1021/jp9904771
  23. 23. Borlaf M, Moreno R. Colloidal sol-gel: A powerful low-temperature aqueous synthesis route of nanosized powders and suspensions. Open Ceramics. 2021;8:100200. https://doi.org/10.1016/j.oceram.2021.100200
  24. 24. Hachem K, Ansari MJ, Saleh RO, Kzar HH, Al-Gazally ME, Altimari US, et al. Methods of chemical synthesis in the synthesis of nanomaterials and nanoparticles by the chemical deposition method: A review. Bionanosci. 2022;12:1032–57. https://doi.org/10.1007/s12668-022-00996-w
  25. 25. Das S, Srivasatava VC. Synthesis and characterization of ZnO–MgO nanocomposite by the co-precipitation method. Smart Sci. 2016;4:190–95. https://doi.org/10.1080/23080477.2016.1260425
  26. 26. Jayatissa YX, Yu Z, Chen X, Li M. Hydrothermal synthesis of nanomaterials. J Nanomater. 2020;90:78–84. https://doi.org/10.1016/j.saa.2012.01.006
  27. 27. Singh M, Manikandan S, Kumaraguru AK. Nanoparticles: A new technology with wide applications. Res J Nanosci Nanotechnol. 2011;1:1–11. https://doi.org/10.3923/rjnn.2011.1.11
  28. 28. Dangi K, Verma AK. Efficient & eco-friendly smart nano-pesticides: emerging prospects for agriculture. Mater Today Proc. 2021;45:3819–24. https://doi.org/10.1016/j.matpr.2021.03.211
  29. 29. Sani MNH, Amin M, Siddique AB, Nasif SO, Ghaley BB, Ge L, et al. Waste-derived nanobiochar: A new avenue towards sustainable agriculture, environment and circular bioeconomy. Sci Total Environ. 2023;905:166881. https://doi.org/10.1016/j.scitotenv.2023.166881
  30. 30. Zhuang J, Gentry RW. Environmental application and risks of nanotechnology: A balanced view, In: Biotechnology and nanotechnology risk assessment: minding and managing the potential threats around us. ACS Publications; 2011. p. 41–67. https://doi.org/10.1021/bk-2011-1079.ch003
  31. 31. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed. 2014;53:12320–64. https://doi.org/10.1002/anie.201403036
  32. 32. El-Wahab A, El-Bendary HM. Nano silica as a promising nano pesticide to control three different aphid species under semi-field conditions in Egypt. Egypt Acad J Biol Sci F Toxicol Pest Control. 2016;8:35–49. https://dx.doi.org/10.21608/eajbsf.2016.17117
  33. 33. Shaker AM, Ibrahiem MAA, Elham FA, Heba YA. Impact of nanoparticle materials on the control of seedling pests in Egyptian cotton. Egypt J Plant Prot Res Inst. 2020;3:138–47.
  34. 34. Mawale KS, Nandini B, Giridhar P. Copper and Silver Nanoparticle Seed priming and foliar spray modulate plant growth and thrips infestation in Capsicum spp. Omega. 2024;9:3430–44. https://doi.org/10.1021/acsomega.3c06961
  35. 35. Shahid M, Naeem-Ullah U, Khan WS, Saeed S, Razzaq K. Biocidal activity of green synthesized silver nanoformulation by Azadirachta indica extract, a biorational approach against notorious cotton pest whitefly, Bemisia tabaci (Homoptera; Aleyrodidae). Int J Trop Insect Sci. 2022;42:2443–54. https://doi.org/10.1007/s42690-022-00771-0
  36. 36. Cheng B, Chen F, Wang C, Liu X, Yue L, Cao X, et al. The molecular mechanisms of silica nanomaterials enhancing the rice (Oryza sativa L.) resistance to plant hoppers (Nilaparvata lugens Stal). Sci Total Environ. 2021;767:144967. https://doi.org/10.1016/j.scitotenv.2021.144967
  37. 37. Debnath N, Mitra S, Das S, Goswami A. Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol. 2012;221:252–56. https://doi.org/10.1016/j.powtec.2012.01.009
  38. 38. El-Bendary HM, El-Helaly AA. First record nanotechnology in agricultural: silica nano-particles a potential new insecticide for pest control. App Sci Report. 2013;4:241–46.
  39. 39. Pittarate S, Rajula J, Rahman A, Vivekanandhan P, Thungrabeab M, Mekchay S, et al. Insecticidal effect of zinc oxide nanoparticles against Spodoptera frugiperda under laboratory conditions. Insects. 2021;12:1017. https://doi.org/10.3390/insects12111017
  40. 40. Shoaib A, Elabasy A, Waqas M, Lin L, Cheng X, Zhang Q, et al. Entomotoxic effect of silicon dioxide nanoparticles on Plutellaxylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol Environ Chem. 2018;100:80–91. https://doi.org/10.1080/02772248.2017.1387786
  41. 41. Meng X, Abdlli N, Wang N, Lu P, Nie Z, Dong X, et al. Effects of Ag nanoparticles on growth and fat body proteins in silkworms (Bombyx mori). Biol Trace Elem Res. 2017; 180:327–37. https://doi.org/10.1007/s12011-017-1001-7
  42. 42. Al-Bartya AM, Hamza RZ. Larvicidal, antioxidant activities and perturbation of transaminases activities of titanium dioxide nanoparticles synthesized using Moringa oleifera leaves extract against the red palm weevil (Rhynchophorus ferrugineus). European J Pharm Med Res. 2015;2(6):49–54.
  43. 43. Siva C, Kumar MS, Nagar G, Nadu T, Nagar G, Nadu T. Pesticidal activity of eco-friendly synthesized silver nanoparticles using Aristolochia indica extract against Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). Int J Adv Sci Tech Res. 2015;2:197–226.
  44. 44. Kantrao S, Ravindra MA, Akbar SMD, Jayanthi PDK, Venkataraman A. Effect of biosynthesized silver nanoparticles on growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae): Interaction with midgut protease. J Asia Pac Entomol. 2017;20:583–89. https://doi.org/10.1016/j.aspen.2017.03.018
  45. 45. El-Samahy MFM, El-Ghobary AM, Khafagy IF. Using silica nanoparticles and neemoil extract as new approaches to control Tuta absoluta (Meyrick) in tomato under field conditions. Int J Plant Soil Sci. 2014;3:1355–65. https://doi.org/10.9734/IJPSS/2014/8435
  46. 46. Clausen CA, Kartal SN, Arango RA, Green F. The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance. Nanoscale Res Lett. 2011;6:1–5. https://doi.org/10.1186/1556-276X-6-427
  47. 47. Baliyarsingh B, Pradhan CK. Prospects of plant-derived metallic nanopesticides against storage pests: A review. J Agric Food Res. 2023;14:100687. https://doi.org/10.1016/j.jafr.2023.100687
  48. 48. Padmasri A, Kumara JA, Anil B, Rameash K, Srinivas C, Vijaya K. Efficacy of nanoparticles against rice weevil (Sitophilus oryzae (Linnaeus)) on maize seeds. J Entomol Zool Stud. 2018;6:326–30. https://doi.org/10.20546/ijcmas.2017.612.412
  49. 49. Diagne A, Diop BN, Ndiaye PM, Andreazza C, Sembene M. Efficacy of silica nanoparticles on groundnut bruchid, Caryedon serratus (Olivier) (Coleoptera, Bruchidae). Afr Crop Sci J. 2019;27:229–35. https://doi.org/10.4314/acsj.v27i2.8
  50. 50. Mesbah A, Tayeb ES, Kordy A, Ghitheeth H. Comparative insecticidal activity of nano and coarse silica on the Chinese beetle Callosobruchus chinensis (L) (Coleoptera: Bruchidae). Alex Sci Exch J. 2017;38:654–60. https://doi.org/10.21608/asejaiqjsae.2017.4082
  51. 51. Malaikozhundan B, Vaseeharan B, Vijayakumar S, Thangaraj MP. Bacillus thuringiensis-coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. J Photochem Photobiol B. 2017; 174:306–14. https://doi.org/10.1016/j.jphotobiol.2017.08.014
  52. 52. Ibrahim S, Elbehery H, Samy A. Insecticidal activity of ZnO NPs synthesized by green method using pomegranate peels extract on stored product insects. Egypt J Chem. 2021; 65:135–45. https://doi.org/10.21608/ejchem.2021.92692.4496
  53. 53. Abdel-Megeed A, Abdel-Rheim KH, Kordy AM, El-Ghannam SA, Salem MZ, Adel MM. Duckweed (Lemna minor) biomass aqueous extract-mediated synthesis of silver nanoparticles as a novel formulation era for long-term efficacy against Tribolium castaneum and Sitophilus oryzae adults on wheat seeds. Biomass Convers Biorefin. 2025;15(4):5429–46. https://doi.org/10.1007/s13399-024-05356-0
  54. 54. Ziaee M, Ganji Z. Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val. J Plant Prot Res. 2016;56:250–56. https://doi.org/10.1515/jppr-2016-0037
  55. 55. Idris I, Naddaf M, Harmalani H, Alshater R, Alsafadi R. Efficacy of olive stones and corncobs crystalline silica nanoparticles (SiO2, NPs) treatments on potato tuber moths (Phthorimaea operculella). Silicon. 2023;15:3591–98. https://doi.org/10.1007/s12633-022-02286-2
  56. 56. Vani C, Brindhaa U. Silica nanoparticles as nanocides against Corcyra cephalonica (S.), the stored grain pest. Int J Pharm Bio Sci. 2013;4(3):1108–18.
  57. 57. Biradar W, Nadagouda S, Aralimarad P, Hiregoudar S. Entomotoxic effect of green nanoparticle: An alternate strategy for stored grain pest management. Int J Trop Insect Sci. 2021;41:2829–40. https://doi.org/10.1007/s42690-021-00465-z
  58. 58. Hashem AS, Awadalla SS, Zayed GM, Maggi F, Benelli G. Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum-insecticidal activity and mode of action. Environ Sci Pollut Res Int. 2018;25:18802–12. https://doi.org/10.1007/s11356-018-2068-1
  59. 59. Almadiy AA, Nenaah GE, Shawer DM. Facile synthesis of silver nanoparticles using harmala alkaloids and their insecticidal and growth inhibitory activities against the khapra beetle. J Pest Sci. 2018;91:727–37. https://doi.org/10.1007/s10340-017-0924-2
  60. 60. Giunti G, Palermo D, Laudani F, Algeri GM, Campolo O, Palmeri V. Repellence and acute toxicity of a nano-emulsion of sweet orange essential oil toward two major stored grain insect pests. Ind Crops Prod. 2019;142:111869. https://doi.org/10.1016/j.indcrop.2019.111869.
  61. 61. Belhamel C, Boulekbache–Makhlouf L, Bedini S, Tani C, Lombardi T, Giannotti P, et al. Nanostructured alumina as seed protectant against three stored-product insect pests. J Stored Prod Res. 2020;87:101607. https://doi.org/10.1016/j.jspr.2020.101607
  62. 62. El-Saadony MT, Abd El-Hack ME, Taha AE, Fouda MMG, Ajarem JS, Maodaa SN, et al. Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Tribolium castaneum. Nanomater. 2020;10:587. https://doi.org/10.3390/nano10030587
  63. 63. Chinnaperumal K, Govindasamy B, Paramasivam D, Dilipkumar A, Dhayalan A, Vadivel A, et al. Bio-pesticidal effects of Trichoderma viride formulated titanium dioxide nanoparticle and their physiological and biochemical changes on Helicoverpa armigera (Hub.). Pestic Biochem Physiol. 2018;149:26–36. https://doi.org/10.1016/j.pestbp.2018.05.005
  64. 64. Arumugam G, Velayutham V, Shanmugavel S, Sundaram J. Efficacy of nanostructured silica as a stored pulse protector against the infestation of bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Appl Nanosci. 2016;6:445–50. https://doi.org/10.1007/s13204-015-0446-2
  65. 65. Bilal M, Xu C, Cao L, Zhao P, Cao C, Li F, et al. Indoxacarb-loaded fluorescent mesoporous silica nanoparticles for effective control of Plutella xylostella L. with decreased detoxification enzyme activities. Pest Manag Sci. 2020;76:3749–58. https://doi.org/10.1002/ps.5924
  66. 66. Abdou M, Zyaan O. The proficiency of silver nanoparticles in controlling cotton leafworm, Spodoptera littoralis (BOISD.), under the laboratory conditions. Egypt J Zool. 2023;80:1–7. https://doi.org/10.21608/ejz.2022.174453.1090
  67. 67. Bharani RSA, Namasivayam SK. Biogenic silver nanoparticles mediated stress on the developmental period and gut physiology of major lepidopteran pest Spodoptera litura (Fab.) (Lepidoptera: Noctuidae) - An eco-friendly approach of insect pest control. J Environ Chem Eng. 2017;5(1):453–67. https://doi.org/10.1016/j.jece.2016.12.023
  68. 68. Hajji-Hedfi L, Chhipa H. Nano-based pesticides: challenges for pest and disease management, Euro Mediterr J Environ Integr. 2021;6:69. https://doi.org/10.1007/s41207-021-00279-y
  69. 69. Forim MR, Costa ES, Da Silva MFDGF, Fernandes JB, Mondego JM, Boica Junior AL. Development of a new method to prepare nano-/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. J Agric Food Chem. 2013;61:9131–39. https://doi.org/10.1021/jf403187y
  70. 70. Nuruzzaman MD, Rahman MM, Liu Y, Naidu R. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. J Agric Food Chem. 2016;64:1447–83. https://doi.org/10.1021/acs.jafc.5b05214
  71. 71. Shakiba S, Astete CE, Paudel S, Sabliov CM, Rodrigues DF, Louie SM. Emerging investigator series: polymeric nanocarriers for agricultural applications: synthesis, characterisation and environmental and biological interactions. Environ Sci Nano. 2020;7:37–67. https://doi.org/10.1039/C9EN01127G
  72. 72. Pascoli M, Lopes-Oliveira PJ, Fraceto LF, Seabra AB, Oliveira HC. State of the art of polymeric nanoparticles as carrier systems with agricultural applications: A minireview. Energy Ecol Environ. 2018;3:137–48. https://doi.org/10.1007/s40974-018-0090-2
  73. 73. Yan S, Ren B, Shen J. Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management. Insect Sci. 2021;28:21–34. https://doi.org/10.1111/1744-7917.12822
  74. 74. Wang G, Wang Q, Liu W, Wen J, Yang Y, Niu Z, et al. Effects of double-stranded RNA-degrading nucleases on RNAi efficiency in beet moth Spodoptera exigua (Lepidoptera: Noctuidae). Insects. 2025;16:229. https://doi.org/10.3390/insects16020229
  75. 75. Shang H, Ma C, Li C, White JC, Polubesova T, Chefetz B, et al. Copper sulfide nanoparticles suppress Gibberella fujikuroi infection in rice (Oryza sativa L.) by multiple mechanisms: contact-mortality, nutritional modulation and phytohormone regulation. Environ Sci Nano. 2020;7:2632–43. https://doi.org/10.1039/D0EN00535E
  76. 76. Kim S, Lee S, Lee I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut. 2012;223:2799–806. https://doi.org/10.1007/s11270-011-1067-3
  77. 77. Nair PM, Chung IM. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere. 2014;112:105–13. https://doi.org/10.1016/j.chemosphere.2014.03.056
  78. 78. Wang J, Tao M, Xu L, Fan N, Zhao C, Xiao Z, et al. Chitosan nanocarriers loaded with salicylic acid for controlling fall armyworm (Spodoptera frugiperda) and alleviating oxidative stress in maize plants. Environ Sci Nano. 2023;10:3295–306. https://doi.org/10.1039/D3EN00417C
  79. 79. Abou El-Ela AS, Ntiri ES, Munawar A, Shi XX, Zhang C, Pilianto J, et al. Silver and copper-oxide nanoparticles prepared with GA3 induced defence in rice plants and caused mortalities to the brown planthopper, Nilaparvata lugens (Stal). Nano Impact. 2022;28:100428. https://doi.org/10.1016/j.impact.2022.100428
  80. 80. Burklew CE, Ashlock J, Winfrey WB, Zhang B. Effects of aluminium oxide nanoparticles on the growth, development and microRNA expression of tobacco (Nicotiana tabacum). PLoS One. 2012;7(5):e34783. https://doi.org/10.1371/journal.pone.0034783
  81. 81. Rangaraj S, Gopalu K, Muthusamy P, Rathinam Y, Venkatachalam R, Narayanasamy K. Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.). Adv. 2014;4:8461–65. https://doi.org/10.1039/C3RA46251J
  82. 82. Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K. Chitosan nanoparticles: A positive modulator of innate immune responses in plants. Sci Rep. 2015;5:15195. https://doi.org/10.1038/srep15195
  83. 83. Ghorbanpour M, Mohammadi H, Kariman K. Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. Environ Sci Nano. 2020;7:443–61. https://doi.org/10.1039/C9EN00973F
  84. 84. Lopez-Vargas ER, Ortega-Ortiz H, Cadenas-Pliego G, de Alba Romenus K, Cabrera de la Fuente M, Benavides-Mendoza A, et al. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Appl Sci. 2018;8:1020. https://doi.org/10.3390/app8071020
  85. 85. Kannan M, Elango K, Tamilnayagan T, Preetha S, Kasivelu G. Impact of nanomaterials on beneficial insects in agricultural ecosystems. In: Thangadurai D, Sangeetha J, Prasad R, editors. Nanotechnology for food, agriculture and the environment. Nanotechnology in the Life Sciences. Springer; 2020. p. 379–93. https://doi.org/10.1007/978-3-030-31938-0_16
  86. 86. Pokhrel LR, Dubey B. Potential impact of low-concentration silver nanoparticles on predator-prey interactions between predatory dragonfly nymphs and Daphnia magna as a prey. Environ Sci Technol. 2012;46:7755–62. https://doi.org/10.1021/es204055c
  87. 87. Murugan K, Dinesh D, Kumar PJ, Panneerselvam C, Subramaniam J, Madhiyazhagan P, et al. Datura metel-synthesised silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res. 2015;114:4645–54. https://doi.org/10.1007/s00436-015-4710-x
  88. 88. Karthika S, Kumar NBN, Gunasekaran K, Subramanian KS. Biosafety of nanoemulsion of hexanal to honey bees and natural enemies. Indian J Sci Technol. 2015;8:1–7. https://doi.org/10.17485/ijst/2015/v8i30/52668
  89. 89. Mohan C, Sridharan S, Gunasekaran K, Subramanian KS, Natarajan N. Biosafety of hexanal as nanoemulsion on egg parasitoid Trichogramma spp. J Entomol Zool Stud. 2017;5:1541–44.
  90. 90. Junaid MD, Gokce AF. Global agricultural losses and their causes. Bull Biol All Sci Res. 2024;66. https://doi.org/10.54112/bbasr.v2024i1.66
  91. 91. Tortella G, Rubilar O, Pieretti JC, Fincheira P, de Melo Santana B, Fernandez-Baldo MA, et al. Nanoparticles as a promising strategy to mitigate biotic stress in agriculture. Antibiotics. 2023;12:338. https://doi.org/10.3390/antibiotics12020338
  92. 92. Qamar SUR, Tanwir S, Khan WA, Altaf J, Ahmad JN. Biosynthesis of silver nanoparticles using Ocimum tenuiflorum extract and its efficacy assessment against Helicoverpa armigera. Int J Pest Manag. 2024;70:375–83. https://doi.org/10.1080/09670874.2021.1980244
  93. 93. Murugan K, Roni M, Panneerselvam C, Suresh U, Rajaganesh R, Aruliah R, et al. Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiol Mol Plant Pathol. 2018;101:202–13. https://doi.org/10.1016/j.pmpp.2017.02.004
  94. 94. Ghidan AY, Al-Antary TM, Awwad AM. Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: effect on green peach aphid. Environ Nanotechnol Monit Manag. 2016;6:95–98. https://doi.org/10.1016/j.enmm.2016.08.002
  95. 95. Malaikozhundan B, Vinodhini J. Nanopesticidal effects of Pongamia pinnata leaf extract coated zinc oxide nanoparticle against the pulse beetle, Callosobruchus maculatus. Mater Today Commun. 2018;14:106–15. https://doi.org/10.1016/j.mtcomm.2017.12.015
  96. 96. Kamil D, Prameeladevi T, Ganesh S, Prabhakaran N, Nareshkumar R, Thomas SP. Green synthesis of silver nanoparticles by entomopathogenic fungus Beauveria bassiana and their bioefficacy against mustard aphid (Lipaphiserysimi Kalt.). Indian J Exp Biol. 2017;55:555–61.
  97. 97. Badawy AA, Abdelfattah NAH, Salem SS, Awad MF, Fouda A. Efficacy assessment of biosynthesized copper oxide nanoparticles (CuO-NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum L.) plant. Biol. 2021;10:233. https://doi.org/10.3390/biology10030233
  98. 98. Ge J, Hu J, Cui S, Wang Y, Xu C, Liu W. Biosynthesis of Bt-Ag2O nanoparticles using Bacillus thuringiensis and their pesticidal and antimicrobial activities. Appl Microbiol Biotechnol. 2024;108:157. https://doi.org/10.1007/s00253-023-12859-9
  99. 99. Al-Radadi NS, Hussain T, Faisal S, Shah SAR. Novel biosynthesis, characterization and bio-catalytic potential of green algae (Spirogyra hyalina) mediated silver nanomaterials. Saudi J Biol Sci. 2022;29:411–19. https://doi.org/10.1016/j.sjbs.2021.09.013
  100. 100. Anees MM, Patil SB, Kambrekar DN, Chandrashekhar SS, Jahagirdar S. Biosynthesis, characterization, evaluation and shelf-life study of silver nanoparticles against cotton bollworm, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera). Nanomater. 2022;12:3511. https://doi.org/10.3390/nano12193511
  101. 101. Zavala-Zapata V, Ramirez-Barron SN, Sanchez-Borja M, Aguirre-Uribe LA, Delgado-Ortiz JC, Sanchez-Pena SR, et al. Insecticide efficacy of green synthesis silver nanoparticles on Diaphorina citri Kuwayama (Hemiptera: Liviidae). Insects. 2024;15:469. https://doi.org/10.3390/insects15070469
  102. 102. Shyam-Sundar N, Karthi S, Senthil-Nathan S, Narayanan KR, Santoshkumar B, Sivanesh H, et al. Eco-friendly biosynthesis of TiO2 nanoparticles using Desmostachya bipinnata extract: larvicidal and pupicidal potential against Aedes aegypti and Spodoptera litura and acute toxicity in non-target organisms. Sci Total Environ. 2023; 858: 159512. https://doi.org/10.1016/j.scitotenv.2022.159512
  103. 103. Asghar MS, Sarwar ZM, Almadiy AA, Shami A, El Hadi Mohamed RA, Ahmed N, et al. Toxicological effects of silver and zinc oxide nanoparticles on the biological and life table parameters of Helicoverpa armigera (Noctuidae: Lepidoptera). Agric. 2022;12:1744. https://doi.org/10.3390/agriculture12101744
  104. 104. Ruiz-Aguilar MY, Aguirre-Uribe LA, Ramirez-Barron SN, Perez-Luna YD, Castro-del Angel E, Juarez AH. Insecticidal efficacy of zinc oxide and silicon dioxide nanoparticles against larvae of Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae) Efficacy of nanoparticles on Spodoptera frugiperda. J Exp Nanosci. 2025;20(1):2466532. https://doi.org/10.1080/17458080.2025.2466532
  105. 105. Ibrahim SS, Elbehery HH, Samy A. The efficacy of green silica nanoparticles synthesised from rice straw in the management of Callosobruchus maculatus (Col., Bruchidae). Sci Rep. 2024;14:8834. https://doi.org/10.1038/s41598-024-58856-4
  106. 106. Amin MA, Ismail MA, Badawy AA, Awad MA, Hamza MF, Awad MF, et al. The potency of fungal-fabricated selenium nanoparticles to improve the growth performance of Helianthus annuus L. and control of cutworm Agrotis ipsilon. Catalysts. 2021;11:1551. https://doi.org/10.3390/catal11121551
  107. 107. Ramkumar G, Asokan R, Ramya S, Gayathri G. Characterization of Trigonella foenum-graecum derived iron nanoparticles and its potential pesticidal activity against Tuta absoluta (Lepidoptera). J Clust Sci. 2021;32:1185–90. https://doi.org/10.1007/s10876-020-01867-8
  108. 108. Eskin A, Bozdogan H. Effects of the copper oxide nanoparticles (CuO NPs) on Galleria mellonella hemocytes. Drug Chem Toxicol. 2022;45:1870–80. https://doi.org/10.1080/01480545.2021.1892948
  109. 109. De Oliveira JL, Campos EV, Pereira AE, Nunes LE, Da Silva CC, Pasquoto T, et al. Geraniol encapsulated in chitosan/gum arabic nanoparticles: A promising system for pest management in sustainable agriculture. J Agric Food Chem. 2018; 66:5325–34. https://doi.org/10.1021/acs.jafc.8b00331
  110. 110. Namasivayam SK, Bharani RA, Karunamoorthy K. Insecticidal fungal metabolites fabricated chitosan nanocomposite (IM-CNC) preparation for the enhanced larvicidal activity - An effective strategy for green pesticide against economically important insect pests. Int J Biol Macromol. 2018;120:921–44. https://doi.org/10.1016/j.ijbiomac.2018.08.130
  111. 111. de Freitas Proenca PL, Campos EV, Costa TG, de Lima R, Preisler AC, de Oliveira HC, et al. Curcumin and carvacrol co-loaded zein nanoparticles: comprehensive preparation and assessment of biological activities in pest control. Plant Nano Biol. 2024;8:100067. https://doi.org/10.1016/j.plana.2024.100067
  112. 112. Kumar S, Bhanjana G, Sharma A, Sidhu MC, Dilbaghi N. Synthesis, characterization and on-field evaluation of pesticide-loaded sodium alginate nanoparticles. Carbohydr Polym. 2014;101:1061–67. https://doi.org/10.1016/j.carbpol.2013.10.025
  113. 113. Christofoli M, Costa ECC, Bicalho KU, de Cassia Domingues V, Peixoto MF, Alves CCF, et al. Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Ind Crops Prod. 2015;70:301–08. https://doi.org/10.1016/j.indcrop.2015.03.025
  114. 114. Yang FL, Li XG, Zhu F, Lei CL. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem. 2009;57: 10156–62. https://doi.org/10.1021/jf9023118
  115. 115. Shanmugapriya S, Jeya Sundara Sharmila D, Karthikeyan G, Subramanian KS. Bioassay of azadirachtin nanofomulation against Bemisia tabaci, the vector of mungbean yellow mosaic virus. Madras Agric J. 2019;106.
  116. 116. Suresh U, Murugan K, Panneerselvam C, Cianfaglione K, Wang L, Maggi F. Encapsulation of sea fennel (Crithmum maritimum) essential oil in nanoemulsion and SiO2 nanoparticles for treatment of the crop pest Spodoptera litura and the dengue vector Aedes aegypti. Ind Crops Prod. 2020;158:113033. https://doi.org/10.1016/j.indcrop.2020.113033
  117. 117. Krithika VP, Bellie A, Haran R, Thirunavukarasu D, Ganeshan S, Sankaranarayanan C, et al. Nanoemulsified formulation of cell-free supernatant from Photorhabdus luminescens as a sustainable biopesticide against Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Crop Prot. 2025;190:107057. https://doi.org/10.1016/j.cropro.2024.107057
  118. 118. Pereira KD, Quintela ED, Da Silva DJ, Do Nascimento VA, Da Rocha DV, Silva JF, et al. Characterization of nanospheres containing Zanthoxylum riedelianum fruit essential oil and their insecticidal and deterrent activities against Bemisia tabaci (Hemiptera: Aleyrodidae). Mol. 2018;23(8):2052. https://doi.org/10.3390/molecules23082052

Downloads

Download data is not yet available.