Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 2 (2025)

The role of LED lighting in enhancing post-harvest fruit and vegetable quality

DOI
https://doi.org/10.14719/pst.7318
Submitted
20 January 2025
Published
17-05-2025 — Updated on 27-05-2025
Versions

Abstract

Improper handling practices often aggravate post-harvest losses in horticultural produce. Due to ethylene production, climacteric fruits have a short shelf life, which triggers ripening and senescence. Traditionally, post-harvest preservation has relied on chemical methods, which can pose health risks. In contrast, Light-Emitting Diode (LED) treatment has emerged as an effective, residue-free alternative to conventional light sources for maintaining the quality of fruits and vegetables during storage. LED treatment has enhanced the accumulation of important phytochemicals such as vitamins, chlorophyll, total soluble solids and carotenoids in fruits and vegetables. It also leads to changes in anthocyanin, carotenoids, phenols and flavonoids. These beneficial effects are linked to the interaction of LED light with plant physiology, which can help regulate ripening, improve nutritional content and control microbial growth. Combining different LED wavelengths at varying intensities during post-harvest storage has been found to promote fresh produces’ nutritional value, slow` ripening and reduce pathogenic microbial load. While research on using LEDs for post-harvest quality preservation is still in its early stages, initial findings are promising. This review examines the applications of LED treatment in preserving the post-harvest quality of fresh horticultural produce, highlighting its role in extending shelf life, maintaining nutritional value and reducing post-harvest losses.

References

  1. 1. Dou H, Niu G, Gu M, Masabni JG. Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments. Horticulturae. 2017;3(2):36. https://doi.org/10.3390/horticulturae3020036
  2. 2. Karoney EM, Molelekoa T, Bill M, Siyoum N, Korsten L. Global research network analysis of fresh produce post-harvest technology: Innovative trends for loss reduction. Post-harvest Biol Techno. 2024;208:112642. https://doi.org/10.1016/j.postharvbio.2023.112642
  3. 3. Sharma C, Pathak P, Yadav SP, Gautam S. Potential of emerging all-natural edible coatings to prevent post-harvest losses of vegetables and fruits for sustainable agriculture. Progress Organic Coat. 2024;193:108537. https://doi.org/10.1016/j.porgcoat.2024.108537
  4. 4. Charles F, Nilprapruck P, Roux D, Sallanon H. Visible light as a new tool to maintain fresh-cut lettuce post-harvest quality. Post-harvest Biol Techno. 2018;135:51 6. https://doi.org/10.1016/j.postharvbio.2017.08.024
  5. 5. Liebsch D, Keech O. Dark?induced leaf senescence: new insights into a complex light?dependent regulatory pathway. New Phytologist. 2016;212(3):563–70. https://doi.org/10.1111/nph.14217
  6. 6. Dsouza C, Yuk HG, Khoo GH, Zhou W. Application of light?emitting diodes in food production, post-harvest preservation and microbiological food safety. Compr Rev Food Sci Food Saf. 2015;14(6):719–40. https://doi.org/10.1111/1541-4337.12155
  7. 7. Koutchma T, Popovi? V, Green A. Overview of ultraviolet (UV) LED technology for applications in food production. In: Koutchma T, editor. Ultraviolet LED technology for food applications. New York: Academic Press; 2019. p. 1?23
  8. https://doi.org/10.1016/B978-0-12-817794-5.00001-7
  9. 8. Perera WP, Navaratne S, Wickramasinghe I. Impact of spectral composition of light from light-emitting diodes (LEDS) on post-harvest quality of vegetables: A review. Post-harvest Biol Techno. 2022;191:111955. https://doi.org/10.1016/j.postharvbio.2022.111955
  10. 9. Piovene C, Orsini F, Bosi S, Sanoubar R, Bregola V, Dinelli G, et al. Optimal red: blue ratio in LED lighting for nutraceutical indoor horticulture. Sci Hortic. 2015 Sep 22;193:202?08. https://doi.org/10.1016/j.scienta.2015.07.015
  11. 10. Dutta GS, Jatothu B. Fundamentals and applications of light-emitting diodes (LED) in in vitro plant growth and morphogenesis. Plant Biotech Rep. 2013 Jul;7:211?20.https://doi.org/10.1007/s11816-013-0277-0
  12. 11. Jin P, Yao D, Xu F, Wang H, Zheng Y. Effect of light on quality and bioactive compounds in post-harvest broccoli florets. Food Chem. 2015;172:705?09. https://doi.org/10.1016/j.foodchem.2014.09.134
  13. 12. Lai ML, Tay TY, Sadhanala A, Dutton SE, Li G, Friend RH, Tan ZK. Tunable near-infrared luminescence in tin halide perovskite devices. J Phys Chem Lett 2016;7(14):2653?58. https://doi.org/10.1021/acs.jpclett.6b01047
  14. 13. Mawphlang OI, Kharshiing EV. Photoreceptor-mediated plant growth responses: implications for photoreceptor engineering toward improved performance in crops. Front Plant Sci. 2017;8:1181. https://doi.org/10.3389/fpls.2017.
  15. 01181
  16. 14. Li J, Li G, Wang H, Wang Deng X. Phytochrome signaling mechanisms. Arabidopsis Book; 2011;9:e0148. https://doi.org/10.1199/tab.0148
  17. 15. Kadomura-Ishikawa Y, Miyawaki K, Noji S, Takahashi A. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits. J Plant Res. 2013;126:847?57. https://doi.org/10.1007/s10265-013-0582-2
  18. 16. Pennisi G, Orsini F, Castillejo N, Gómez PA, Crepaldi A, Fernández JA, et al. Spectral composition from LED lighting during storage affects nutraceuticals and safety attributes of fresh-cut red chard (Beta vulgaris) and rocket (Diplotaxis tenuifolia) leaves. Post-har Biol Technol. 2021;175:111500. https://doi.org/10.1016/j.postharvbio.2021.
  19. 111500.
  20. 17. Zhou F, Zuo J, Xu D, Gao L, Wang Q, Jiang A. Low intensity white light-emitting diodes (LED) application to delay senescence and maintain quality of post-harvest pakchoi (Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee). Sci Hortic. 2020;262:109060. https://doi.org/10.1016/j.scienta.2019.109060
  21. 18. Wang XY, Xu XM, Cui J. The importance of blue light for leaf area expansion, development of photosynthetic apparatus and chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica. 2015;53(2):213?22. https://doi.org/10.1007/s11099-015-0083-8
  22. 19. Hasperué JH, Rodoni LM, Guardianelli LM, Chaves AR, Martínez GA. Use of LED light for Brussels sprouts post-
  23. harvest conservation. Sci Hortic. 2016;213:281?86. https://doi.org/10.1016/j.scienta.2016.11.004
  24. 20. Darko E, Heydarizadeh P, Schoefs B, Sabzalian MR. Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philosophical Transactions of the Royal Society B: Biol Sci. 2014 Apr 19;369(1640):20130243. https://doi.org/10.1098/rstb.2013.0243
  25. 21. Wang H, Ma LG, Li JM, Zhao HY, Deng XW. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Sci. 2001;294(5540):154?58. https://doi.org/10.1126/science.1063630
  26. 22. Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol. 2009;149(2):885?93. https://doi.org/10.1104/pp.108.130013
  27. 23. Samuolien? G, Sirtautas R, Brazaityt? A, Duchovskis P. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 2012;134(3):1494?99. https://doi.org/10.1016/j.foodchem.2012.03.061
  28. 24. Toledo ME, Ueda Y, Imahori Y, Ayaki M. L-ascorbic acid metabolism in spinach (Spinacia oleracea L.) during post-harvest storage in light and dark. Post-harvest Biol Techno. 2003;28(1):47?57. https://doi.org/10.1016/S0925-5214(02)00121-7
  29. 25. Xu F, Cao S, Shi L, Chen W, Su X, Yang Z. Blue light irradiation affects anthocyanin content and enzyme activities involved in post-harvest strawberry fruit. J Agric Food Chem. 2014;62(20):4778?83.https://doi.org/10.1021/jf501120u
  30. 26. Büchert AM, Lobato GME, Villarreal NM, Civello PM, Martínez GA. Effect of visible light treatments on post-harvest senescence of broccoli (Brassica oleracea L.). J Sci Food Agri. 2011;91(2):355?61. https://doi.org/ 10.1002/jsfa.4193
  31. 27. Xu F, Shi L, Chen W, Cao S, Su X, Yang Z. Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit. Sci Hortic. 2014;175:181-86.https://doi.org/10.1016/j.scienta.2014.06.
  32. 012
  33. 28. Kim BS, Lee HO, Kim JY, Kwon KH, Cha HS, Kim JH. An effect of light-emitting diode (LED) irradiation treatment on the amplification of functional components of immature strawberry. Hortic, Environ Biotechnol. 2011;52:35?39. https://doi.org/10.1007/s13580-011-0189-2
  34. 29. Gong D, Cao S, Sheng T, Shao J, Song C, Wo F, et al. Effect of blue light on ethylene biosynthesis, signalling and fruit ripening in post-harvest peaches. Sci Hortic. 2015 ;197:657?64. https://doi.org/10.1016/j.scienta.2015.10.034
  35. 30. Zhan L, Hu J, Li Y, Pang L. Combination of light exposure and low temperature in preserving quality and extending shelf-life of fresh-cut broccoli (Brassica oleracea L.). Post-harvest Biol Techno. 2012;72:76?81. https://doi.org/10.1016/j.postharvbio.2012.05.001
  36. 31. Shao M, Liu W, Zha L, Zhou C, Zhang Y, Li B. Differential effects of high light duration on growth, nutritional quality and oxidative stress of hydroponic lettuce under red and blue LED irradiation. Sci Hortic. 2020 Jun 27;268:109366.https://doi.org/10.1016/j.scienta.2020.109366
  37. 32. Taulavuori E, Taulavuori K, Holopainen JK, Julkunen?Tiitto R, Acar C, Dincer I. Targeted use of LEDs in improvement of production efficiency through phytochemical enrichment. J Sci Food Agriculture. 2017;97(15):5059?64. https://doi.org/10.1002/jsfa.8492
  38. 33. Lee YJ, Ha JY, Oh JE, Cho MS. The effect of LED irradiation on the quality of cabbage stored at a low temperature. Food Sci and Biotechnol. 2014;23:1087?93. https://doi.org/10.1007/s10068-014-0149-6
  39. 34. Loi M, Liuzzi VC, Fanelli F, De Leonardis S, Creanza TM, Ancona N, et al. Effect of different light-emitting diode (LED) irradiation on the shelf life and phytonutrient content of broccoli (Brassica oleracea L. var. italica). Food Chem 2019;283:206?14.https://doi.org/10.1016/j.foodchem.2019.01.021
  40. 35. Kang CH, Yoon EK, Muthusamy M, Kim JA, Jeong MJ, Lee SI. Blue LED light irradiation enhances L-ascorbic acid content while reducing reactive oxygen species accumulation in Chinese cabbage seedlings. Scientia Hortic. 2020 Feb 5;261:108924.https://doi.org/10.1016/j.scienta.2019.108924
  41. 36. Nguyen QD, Huynh HN, Pham TT, Tran TN. Application of blue light led in the inactivation of pathogenic fungi on tomato fruit during natural storage. Proceed Inter Sym; 2023.5:99?103 https://doi.org/10.29007/x1sx
  42. 37. Ntsoane ML, Manhivi VE, Shoko T, Seke F, Sultanbawa Y, Sivakumar D. Brassica microgreens cabbage (Brassica oleracea), radish (Raphanus sativus) and rocket (Eruca vesicaria) (L.) Cav: Application of red-light emitting diodes lighting during post-harvest storage and in vitro digestion on bioactive compounds and antioxidant activity. Intern J Food Sci Technol. 2024 Mar;59(3):1432?42.https://doi.org/10.1111/ijfs.16890
  43. 38. Zoratti L, Karppinen K, Escobar LA, Häggman H, Jaakola L. Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci. 2014 Oct 9;5:534. https://doi.org/10.3389/fpls.2014.00534
  44. 39. Ouzounis T, Fretté X, Rosenqvist E, Ottosen CO. Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums and campanulas. J Plant Physiol. 2014;171(16):1491?99. https://doi.org/10.1016/j.jplph.2014.06.012
  45. 40. Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S. How relevant are flavonoids as antioxidants in plants?. Trends in Plant Sci. 2009;14(3):125?32. https://doi.org/10.1016/j.tplants.2008.12.003
  46. 41. Manukyan A. Effects of PAR and UV?B radiation on herbal yield, bioactive compounds and their antioxidant capacity of some medicinal plants under controlled environmental conditions. Photochem and Photobiol. 2013;89(2):406?14. https://doi.org/10.1111/j.1751-1097.2012.01242.x
  47. 42. Hasan MM, Bashir T, Bae H. Use of ultrasonication technology for the increased production of plant secondary metabolites. Molecules. 2017;22(7):1046. https://doi.org/10.3390/molecules22071046
  48. 43. Wilawan N, Ngamwonglumlert L, Devahastin S, Chiewchan N. Changes in enzyme activities and amino acids and their relations with phenolic compounds contents in okra treated by LED lights of different colors. Food Bioprocess Technol. 2019;12:1945?54. https://doi.org/10.1007/s11947-019-02359-y
  49. 44. Zhang Y, Jiang L, Li Y, Chen Q, Ye Y, Zhang Y, et al. Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria× ananassa). Molecules. 2018;23(4):820.https://doi.org/10.1016/
  50. j.resenv.2021.100023
  51. 45. Hasperué JH, Guardianelli L, Rodoni LM, Chaves AR, Martínez GA. Continuous white–blue LED light exposition delays post-harvest senescence of broccoli. Lebensmittel-Wissenschaft & Technologie. 2016;65:495?502. https://doi.org/10.1016/j.lwt.2015.08.041
  52. 46. Mortensen A, Skibsted LH, Truscott TG. The interaction of dietary carotenoids with radical species. Arch Biochem Biophysics. 2001;385(1):13?19. https://doi.org/10.1006/abbi.2000.2172
  53. 47. Kochetova GV, Avercheva OV, Bassarskaya EM, Zhigalova TV. Light quality as a driver of photosynthetic apparatus development. Biophysical Rev. 2022;14(4):779?803.. https://doi.org/10.1007/s12551-022-00985-z
  54. 48. Frede K, Winkelmann S, Busse L, Baldermann S. The effect of LED light quality on the carotenoid metabolism and related gene expression in the genus Brassica. BMC Plant Biol. 2023;23(1):328.https://doi.org/10.1186/s12870-023-04326-4
  55. 49. Lefsrud MG, Kopsell DA, Sams CE. Irradiance from distinct wavelength light-emitting diodes affects secondary metabolites in kale. HortSci. 2008;43(7):2243?44. https://doi.org/10.21273/HORTSCI.43.7.2243
  56. 50. Pashkovskiy P, Sleptsov N, Vereschagin M, Kreslavski V, Rudometova N, Sorokoumov P, et al. Post-harvest red and far-red-light irradiation and low temperature induce the accumulation of carotenoids, capsaicinoids and ascorbic acid in Capsicum annuum L. green pepper fruit. Foods. 2023;12(8):1715. https://doi.org/10.3390/foods12081715
  57. 51. Hu L, Yang C, Zhang L, Feng J, Xi W. Effect of light-emitting diodes and ultraviolet irradiation on the soluble sugar, organic acid and carotenoid content of post-harvest sweet oranges (Citrus sinensis (L.) Osbeck). Molecules. 2019;24(19):3440. https://doi.org/10.3390/molecules24193440
  58. 52. Tadiello A, Longhi S, Moretto M, Ferrarini A, Tononi P, Farneti B, et al. Interference with ethylene perception at the receptor level sheds light on auxin and transcriptional circuits associated with the climacteric ripening of apple fruit (Malus x domestica Borkh.). The Plant J. 2016;88(6):963?75. https://doi.org/10.1111/tpj.13306
  59. 53. Adams-Phillips L, Barry C, Giovannoni J. Signal transduction systems regulating fruit ripening. Trends Plant Sci. 2004;9(7):331?38. https://doi.org/https://doi.org/10.1016/j.tplants.2004.05.004
  60. 54. Gan S, editor. Senescence processes in plants. Blackwell Pub.; 2007.
  61. 55. Drobot LB, Samoylenko AA, Vorotnikov AV, Tyurin-Kuzmin PA, Bazalii AV, Kietzmann T, et al. Reactive oxygen species in signal transduction. The Ukrainian Biochem J. 2013;86:209?17. https://doi.org/10.15407/ubj85.06.209
  62. 56. Ma G, Zhang L, Setiawan CK, Yamawaki K, Asai T, Nishikawa F, et al. Effect of red and blue LED light irradiation on ascorbate content and expression of genes related to ascorbate metabolism in post-harvest broccoli. Post-harvest Biol Techno. 2014;94:97?103. https://doi.org/10.1016/j.postharvbio.2014.03.010
  63. 57. Jia CG, Xu CJ, Wei J, Yuan J, Yuan GF, Wang BL, et al. Effect of modified atmosphere packaging on visual quality and glucosinolates of broccoli florets. Food Chem. 2009 May 1;114(1):28?37. https://doi.org/10.1016/j.foodchem.
  64. 2008.09.009
  65. 58. Kopsell DA, Sams CE. Increases in shoot tissue pigments, glucosinolates and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J American Soc Hortic Sci. 2013;138(1):31?37. https://doi.org/10.21273/JASHS.138.1.31
  66. 59. Lester GE, Makus DJ, Hodges DM. Relationship between fresh-packaged spinach leaves exposed to continuous light or dark and bioactive contents: effects of cultivar, leaf size and storage duration. J Agri and Food Chem. 2010;58(5):2980?87. https://doi.org/10.1021/jf903596v
  67. 60. Liu JD, Goodspeed D, Sheng Z, Li B, Yang Y, Kliebenstein DJ, et al. Keeping the rhythm: light/dark cycles during post-harvest storage preserve the tissue integrity and nutritional content of leafy plants. BMC Plant Biol. 201515:1?9.. https://doi.org/10.1186/s12870-015-0474-9
  68. 61. Zhan L, Li Y, Hu J, Pang L, Fan H. Browning inhibition and quality preservation of fresh-cut romaine lettuce exposed to high-intensity light. Innov Food Sci Emerging Technol. 2012;14:70?76. https://doi.org/10.1016/j.
  69. ifset.2012.02.004
  70. 62. Costa L, Montano YM, Carrión C, Rolny N, Guiamet JJ. Application of low-intensity light pulses to delay post-harvest senescence of Ocimum basilicum leaves. Post-harvest Biol Techno. 2013;86:181?91. https://doi.org/10.1016/j.post
  71. harvbio.2013.06.017
  72. 63. Luksien? Z, Zukauskas A. Prospects of photosensitisation in control of pathogenic and harmful microorganisms. J App Micro. 2009;107(5):1415?24. https://doi.org/10.1111/j.1365-2672.2009.04341.x
  73. 64. Munnik T, Irvine RF, Musgrave A. Phospholipid signalling in plants. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism. 1998;1389(3):222?72. https://doi.org/10.1016/S0005-2760(97)00158-6
  74. 65. Schmidt-Heydt M, Bode H, Raupp F, Geisen R. Influence of light on ochratoxin biosynthesis by Penicillium. Mycotoxin Res. 2010;26:1?8. https://doi.org/10.1007/s12550-009-0034-y
  75. 66. Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso EA, et al. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Current Biol. 2008;18(4):255?59. https://doi.org/10.1016/j.cub.2008.01.0
  76. 61
  77. 67. Häggblom P, Unestam T. Blue light inhibits mycotoxin production and increases total lipids and pigmentation in Alternaria alternata. App Environ Microbiol. 1979;38(6):1074?77. https://doi.org/10.1128/aem.38.6.1074-1077.1979
  78. 68. Oriel S, Nitzan Y. Photoinactivation of Candida albicans by its own endogenous porphyrins. Current Microbiol. 2010;60:117?23. https://doi.org/10.1007/s00284-009-9514-8
  79. 69. Imada K, Tanaka S, Ibaraki Y, Yoshimura K, Ito S. Antifungal effect of 405?nm light on Botrytis cinerea. Lett Applied Microbiol. 2014;59(6):670?76. https://doi.org/10.1111/lam.12330
  80. 70. Luksiene Z. Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina (Kaunas, Lithuania). 2003 Jan 1;39(12):1137?50.
  81. 71. Ghate V, Kumar A, Zhou W, Yuk HG. Irradiance and temperature influence the bactericidal effect of 460-nanometer light-emitting diodes on Salmonella in orange juice. J Food Protect. 2016 Apr 1;79(4):553?60.
  82. 72. Ghate V, Kumar A, Kim MJ, Bang WS, Zhou W, Yuk HG. Effect of 460 nm light-emitting diode illumination on survival of Salmonella spp. on fresh-cut pineapples at different irradiances and temperatures. J Food Engineer. 2017;196:130?38. https://doi.org/10.1016/j.jfoodeng.2016.10.013
  83. 73. Kim MJ, Mikš-Krajnik M, Kumar A, Ghate V, Yuk HG. Antibacterial effect and mechanism of high-intensity 405±5 nm light emitting diode on Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus under refrigerated conditions. J Photochem Photobiol B: Biol. 2015 Dec 1;153:33?39. https://doi.org/10.1016/j.jphotobiol.2015.08.032
  84. 74. Kim MJ, Tang CH, Bang WS, Yuk HG. Antibacterial effect of 405 ± 5 nm light emitting diode illumination against Escherichia coli O157: H7, Listeria monocytogenes and Salmonella on the surface of fresh-cut mango and its influence on fruit quality. Int J Food Microbiol. 2017;244:82?89. https://doi.org/10.1016/j.ijfoodmicro.2016.12.023
  85. 75. Kim MJ, Ng BX, Zwe YH, Yuk HG. Photodynamic inactivation of Salmonella enterica Enteritidis by 405 ± 5-nm light-emitting diode and its application to control salmonellosis on cooked chicken. Food Control. 2017;82:305?15. https://doi.org/10.1016/j.foodcont.2017.06.040
  86. 76. Castillejo N, Martínez-Zamora L, Artés–Hernández F. A photoperiod including visible spectrum LEDs increased sulforaphane in fresh-cut broccoli. Post-harvest Biol Techno. 2023 Jun 1;200:112337. https://doi.org/10.1016/j.
  87. postharvbio.2023.112337
  88. 77. Dueck T, Ieperen WV, Taulavuori K. Light perception, signalling and plant responses to spectral quality and photoperiod in natural and horticultural environments. Environ Exp Bot. 2016; 121:1?150. https://doi.org/10.1016/j.envexpbot.2015.06.012
  89. 78. Kasim MU, Kasim R. While continuous white LED lighting increases chlorophyll content (SPAD), green LED light reduces the infection rate of lettuce during storage and shelf?life conditions. J Food Processing Preserv. 2017;41(6):e13266. https://doi.org/10.1111/jfpp.13266
  90. 79. Dhakal R, Baek KH. Metabolic alternation in the accumulation of free amino acids and ?-aminobutyric acid in post-harvest mature green tomatoes following irradiation with blue light. Hortic Environ Biotechno. 2014;55:36?41. https://doi.org/10.1007/s13580-014-0125-3
  91. 80. Ma G, Zhang L, Kato M, Yamawaki K, Kiriiwa Y, Yahata M, et al. Effect of the combination of ethylene and red LED light irradiation on carotenoid accumulation and carotenogenic gene expression in the flavedo of citrus fruit. Post-harvest Biol Techno. 2015;99:99?104. https://doi.org/10.1016/j.postharvbio.2014.08.002
  92. 81. Kanazawa K, Hashimoto T, Yoshida S, Sungwon P, Fukuda S. Short photoirradiation induces flavonoid synthesis and increases its production in postharvest vegetables. J Agri Food Chem. 2012 May 2;60(17):4359?68. https://doi.org/10.1021/jf300107s
  93. 82. Lee SW, Seo JM, Lee MK, Chun JH, Antonisamy P, Arasu MV, et al. Influence of different LED lamps on the production of phenolic compounds in common and Tartary buckwheat sprouts. Industl Crops Prod. 2014;54:320?26. https://doi.org/10.1016/j.indcrop.2014.01.024
  94. 83. Costanzo G, Vitale E, Iesce MR, Spinelli M, Fontanarosa C, Paradiso R, et al. Modulation of antioxidant compounds in fruits of Citrus reticulata Blanco using post-harvest LED irradiation. Biol. 2023;12(7):1029. https://doi.org/10.
  95. 3390/biology12071029
  96. 84. Li W, Zhang J, Sun J, Chen K, Guan X, Zhang K, et al. Light irradiation with different wavelengths modifies the quality traits and monoterpenes biosynthesis of post-harvest grape berries during the shelf life. Lebensmittel-Wissenschaft & Technologie. 2023;185:115164. https://doi.org/10.1016/j.lwt.2023.115164
  97. 85. Kamol P, Nukool W, Pumjaroen S, Inthima P, Kongbangkerd A, Suphrom N, et al. Harnessing post-harvest light emitting diode (LED) technology of Centella asiatica (L.) Urb. to improve centelloside content by upregulating gene expressions in the triterpenoid pathway. Heliyon. 2024 Jan 15;10(1):e23639:2?6. https://doi.org/10.1016/j.heliyon.
  98. 2023.e23639
  99. 86. Xu Y, You C, Xu C, Zhang C, Hu X, Li X, et al. Red and blue light promote tomato fruit coloration through modulation of hormone homeostasis and pigment accumulation. Post-harvest Biol Techno. 2024 Jan 1;207:112588. https://doi.org/10.1016/j.postharvbio.2023.112588
  100. 87. Ngcobo BL, Bertling I, Clulow AD. Post-harvest alterations in quality and health-related parameters of cherry tomatoes at different maturity stages following irradiation with red and blue LED lights. J Hortic Sci Biotechnol. 2021;96(3):383?91. https://doi.org/10.1080/14620316.2020.1847696
  101. 88. Jin S, Ding Z, Xie J. Study of post-harvest quality and antioxidant capacity of freshly cut amaranth after blue LED light treatment. Plants. 2021;10(8):1614. https://doi.org/10.3390/plants10081614.
  102. 89. Song Y, Qiu K, Gao J, Kuai B. Molecular and physiological analyses of the effects of red and blue LED light irradiation on post-harvest senescence of pak choi. Post-harvest Biol Techno. 2020;164:111155. https://doi.org/ 10.1016/j.postharvbio.2020.111155
  103. 90. Castillejo N, Martínez?Zamora L, Gómez PA, Pennisi G, Crepaldi A, Fernández JA, et al. Postharvest LED lighting: effect of red, blue and far red on quality of minimally processed broccoli sprouts. J Sci Food Agric. 2021;101(1):44?53. https://doi.org/10.1002/jsfa.10820
  104. 91. Shi L, Cao S, Chen W, Yang Z. Blue light induced anthocyanin accumulation and expression of associated genes in Chinese bayberry fruit. Sci Hortic. 2014;179:98?102. https://doi.org/10.1016/j.scienta.2014.09.022
  105. 92. Kokalj D, Zlati? E, Cigi? B, Vidrih R. Post-harvest light-emitting diode irradiation of sweet cherries (Prunus avium L.) promotes accumulation of anthocyanins. Post-harvest Biol Techno. 2019;148:192?99. https://doi.org/10.1016/j.post
  106. harvbio.2018.11.011
  107. 93. Azuma A, Yakushiji H, Sato A. Post-harvest light irradiation and appropriate temperature treatment increase anthocyanin accumulation in grape berry skin. Post-harvest Biol Techno. 2019;147:89?99. https://doi.org/10.1016/j.postharvbio.2018.09.008
  108. 94. Ballester AR, Lafuente MT. LED Blue Light-induced changes in phenolics and ethylene in citrus fruit: Implication in elicited resistance against Penicillium digitatum infection. Food Chem. 2017;218:575?83. https://doi.org/10.1016/j.foodchem.2016.09.089
  109. 95. Zhou X, Cheng J, Sun J, Guo S, Guo X, Chen Q, et al. Effect of red visible lighting on post-harvest ripening of bananas via the regulation of energy metabolism. Hortic. 2023;9(7):840. https://doi.org/10.3390/horticulturae9070
  110. 840
  111. 96. Lafuente MT, Alférez F. Effect of LED Blue Light on Penicillium digitatum and Penicillium italicum strains. Photochem Photobio. 2015;91(6):1412?21. https://doi.org/10.1111/php.12519
  112. 97. Murdoch LE, McKenzie K, Maclean M, Macgregor SJ anderson JG. Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans and on dormant and germinating spores of Aspergillus niger. Fungal Biol. 2013;117(7-8):519?27. https://doi.org/10.1016/j.funbio.2013.05.004
  113. 98. Pham TT, Nguyen TN, Le NT, Dang BT, Nguyen BQ. Post-harvest preservation of green grapes utilising 405 nm
  114. light emitting diode. Case Stud Chem Environl Engineer. 2023;8:100463. https://doi.org/10.1016/j.cscee.2023.100463

Downloads

Download data is not yet available.