Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 2 (2025)

Genetic diversity analysis of fennel (Foeniculum vulgare L.) genotypes using molecular profiling techniques

DOI
https://doi.org/10.14719/pst.7363
Submitted
22 January 2025
Published
24-04-2025 — Updated on 01-05-2025
Versions

Abstract

This study investigated the genetic diversity and relationships among 33 fennel (Foeniculum vulgare L.) genotypes using Simple Sequence Repeat (SSR) markers to support germplasm management and breeding efforts. Fifteen SSR primers generated 37 alleles, averaging 2.47 alleles per primer, with Polymorphic Information Content (PIC) values ranging from 0.210 to 0.499 (mean 0.289), indicating moderate genetic diversity among the studied genotypes. Cluster analysis based on SSR marker data categorized the fennel genotypes into nine distinct clusters, reflecting significant genetic heterogeneity within the population and demonstrating the effectiveness of SSR markers in delineating genetic relationships. Four primers FV-6, FV-290063, FV-30919 and FV- 18902- were particularly valuable, producing unique banding patterns that accurately identified individual genotypes. The identified genetic clusters provide a scientific basis for selecting diverse parental lines for hybridization programs, while the distinctive SSR markers offer practical tools for accurate genotype identification and authentication. These findings hold significant implications for germplasm conservation, supporting the development of strategies to preserve genetic resources and enhance sustainable utilization of fennel diversity. By integrating molecular tools into fennel breeding approaches, this research contributes to developing superior cultivars with improved yield, quality and adaptability to changing environmental conditions. The moderate genetic diversity observed suggests both opportunities for improvement and the need for broadening the genetic base in breeding programs to ensure long-term genetic gain in this economically important aromatic and medicinal crop.

References

  1. Akbari A, Bahmani K, Kazan M, Bilgin ÖF, Rahimi J, Darbandi AI, et al. Analysis of fennel breeding populations based on distinctness, uniformity and stability (DUS) testing via morphological descriptors and DNA molecular markers. Genet Resour Crop Evol. 2024;71(5):1–18.
  2. Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT. Foeniculum vulgare Mill: A review of its botany, phytochemistry, pharmacology, contemporary application and toxicology. Biomed Res Int. 2014;2014:1–32.
  3. Bahmani K, Akbari A, Izadi Darbandi A, Warner RM. Development of high-yielding fennel synthetic cultivars based on polycross progeny performance. Agric Res. 2023;12(4):357–63.
  4. Bahmani K, Akbari A, Izadi-Darbandi A, Ghamari T. Phenological traits, seed yield and essential oil yield of fifty populations of bitter fennel (Foeniculum vulgare). Int J Hortic Sci Technol. 2024;11(3):391–410.
  5. Fujioka T, Kashiwada Y, Kilkuskie RE, Cosentino LM, Ballas LM, Jiang JB, et al. Anti-AIDS agents: bis-benzylisoquinoline alkaloids from Menispermum dauricum and Stephania cepharantha and related alkaloids. J Nat Prod. 2011;59(6):602–09.
  6. Choudhary BR, Sharma SR, Mahajan RK. Indian spices production: status, challenges and the way forward. J Agric Food Res. 2017;11(1):1–12.
  7. Abdel-Massih RM, Fares R, Bazzi S, El-Chami N, Baydoun SE. The apoptotic and anti-proliferative activity of Foeniculum vulgare extract on leukemia cells. J Med Plants Res. 2010;4(9):883–88.
  8. Izadi-Darbandi A, Akbari A, Bahmani K, Warner R, Ebrahimi M, Ramshini H. Fatty acid profiling and oil content variation among Iranian fennel (Foeniculum vulgare Mill. var. vulgare) landraces. Int J Hortic Sci Technol. 2023;10(2):193–202.
  9. Anwar S, Ahmed N, Ullah H, Saeed M. Antimicrobial activity of fennel (Foeniculum vulgare) seed extracts against bacterial strains. J Microbiol Infect Dis. 2020;10(4):186–93.
  10. Singh P, Kumar R, Singh N. Fennel (Foeniculum vulgare Mill.): A comprehensive review of its phytochemistry, pharmacology and medicinal uses. J Essent Oil Res. 2021;33(2):129–43.
  11. Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet. 2002;30:194–200.
  12. Zhang W, Li F, Huang X. Genome-wide identification of SSR markers in Foeniculum vulgare using transcriptome sequencing. Mol Plant Breed. 2016;35:1–12.
  13. Farshadfar M, Moradzade N, Farshadfar E, Shirvani H. Genetic diversity among fennel (Foeniculum vulgare Mill.) genotypes using morphological and SCoT markers. Iran J Rangelands For Plant Breed Genet Res. 2017;25(2):212– 31.
  14. Ogbonna CE, Kavaz D, Adekunle YA, Olawade DB. Phytochemical assessment, elemental composition and biological kinetics of Foeniculum vulgare Mill. stalks. Pharmacol Res - Mod Chinese Med. 2024;11:100453.
  15. Scariolo F, Palumbo F, Barcaccia G. Molecular characterization and genetic structure evaluation of breeding populations of fennel (Foeniculum vulgare Mill.). Agronomy. 2022;12(3):542.
  16. Korpelainen H, Kostamo K, Virtanen V. Microsatellites in asexual and sexual populations of Dryopteris cristata. Ann Bot. 2007;99(5):869–75.
  17. Krishna P, Joshi D, Patil P, Singh P. Genetic diversity analysis in fennel (Foeniculum vulgare Mill.) using SSR markers. Indian J Genet Plant Breed. 2020;80(4):345–51.
  18. Aiello D, Villari C, Vitale A, Nardi L, Leonardi C, Faretra F. Genetic diversity and population structure of Cucurbita pepo in Sicily (Italy) revealed by SSR markers. Hortic Res. 2018;5:1–13. https://doi.org/10.1038/s41438-018-0075-3.
  19. Jassim HA, Hameed MA. Application of SSR markers in the genetic diversity of Apiaceae species. Int J Bot Stud. 2020;5(1):8–14.
  20. Cholin S, Shankar C, Singh R, Shekhar S. Cross-transferability of carrot SSR markers to other Apiaceae species including fennel (Foeniculum vulgare). J Hortic Sci. 2018;13(2):142–48.
  21. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–15.
  22. Sahu V, Tantwai K, Tiwari S, Sapre S, Mishra N, Sondhia S. In-silico approaches for discrimination of Curcuma species and their closely related family using the novel technique of DNA Barcoding. Plant Sci Today. 2024;11(3). https://doi.org/10.14719/pst.3317.
  23. Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME. Optimizing parental selection for genetic linkage maps. Genome. 1993;36(1):181–86. https://doi.org/10.1139/g93-024.
  24. Kumar R, Khar A, Singh M, Thakur R. Genetic diversity assessment in fennel (Foeniculum vulgare) based on ISSR markers. J Spices Aromat Crops. 2014;23(2):101–07.
  25. Deswal RPS, Kumar A, Singh M, Bhunia RK. Assessment of genetic diversity in fennel (Foeniculum vulgare) using ISSR markers. Int J Curr Microbiol Appl Sci. 2017;6(10):1357–63. https://doi.org/10.20546/ijcmas.2017.610.158.
  26. Nag RK, Meena HS, Shivran RK. Genetic variability and correlation studies in fennel (Foeniculum vulgare Mill.). Res Crops. 2017;18(1):31–35.
  27. Bhargava S, Patel S, Chauhan M, Agrawal A. Assessment of genetic diversity and population structure in fennel (Foeniculum vulgare) using SSR markers. J Plant Biochem Biotechnol.
  28. ;30:212–23. https://doi.org.10.1007/s13562-021-00612-7.
  29. Patel P, Bhatt A, Patel M, Patel A. Assessment of genetic variability and population structure in fennel (Foeniculum vulgare) using molecular markers. Indian J Genet Plant Breed.
  30. ;82(1):81–88.
  31. Singh M, Kaur R, Dhillon S. Molecular characterization of fennel (Foeniculum vulgare Mill.) varieties using SSR markers. Indian J Biotechnol. 2023;22(2):106–15.

Downloads

Download data is not yet available.