Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Comparative biochemical compositions and antioxidant properties of commercially grown and wild edible mushroom species from Bangladesh

DOI
https://doi.org/10.14719/pst.7464
Submitted
27 January 2025
Published
17-10-2025 — Updated on 24-10-2025
Versions

Abstract

The study compared the biochemical compositions and antioxidant properties of ten edible mushroom species in Bangladesh, including five cultivated and five wild species. The proximate composition, minerals, heavy metals and antioxidant capacity were analysed using standard procedures. The proximate composition of the mushroom was found to be in the range from 13.22 to 23.42 % for moisture content, 1.42 to 17.22 % for protein, 1.91 to 10.50 % for lipids, 3.12 to 30.11 % for fibre, 1.28 to 14.28 % for ash and 25.62 to 61.49 % for carbohydrate. The cultivated species contained higher amounts of moisture, ash and fibre, while carbohydrates, protein and lipids were higher in the wild species. In addition, eight mineral elements were analysed: Na, K, Ca, Mg, Fe, Cu, Zn and Mn with respective concentrations of 50.96-128.54, 719.7-1586.9, 194.6-683.3, 96.2-204.5, 0.79-180.07, 0.22-4.08, 1.18-5.58 and 0.61-6.98 mg/100 g. Most minerals were found in higher concentrations in cultivated species, except for Guratta woul, which had the highest concentrations of Fe and Mn. Aflatoxins (B1, B2, G1 and G2) were not detected in any of the samples tested. On the other hand, heavy metals (Pb, As, Cd, Cr) were present in negligible amounts, but below the WHO and FAO suggested range. The highest levels of phenolic (507.3 mg/100 g), flavonoid (132.57 mg/100 g) and total antioxidant content (1197 mg/100 g) were detected in the Guratta woul.  Therefore, it can be suggested that both cultivated and wild edible mushrooms could be an excellent source of nutrition and antioxidants.

References

  1. 1. Assemie A, Abaya G. The effect of edible mushroom on health and their biochemistry. Int J Microbiol. 2022;(1):8744788. https://doi.org/10.1155/2022/8744788
  2. 2. Mwangi RW, Macharia JM, Wagara IN, Bence RL. The antioxidant potential of different edible and medicinal mushrooms. Biomed Pharmacother. 2022;147:112621. https://doi.org/10.1016/j.biopha.2022.112621
  3. 3. Zhou Y, Chu M, Ahmadi F, Agar OT, Barrow CJ, Dunshea FR, Suleria HA. A comprehensive review on phytochemical profiling in mushrooms: occurrence, biological activities, applications and future prospective. Food Rev Int. 2024;40(3):924-51. https://doi.org/10.1080/87559129.2023.2202738
  4. 4. Gyar SD, Owaku G. Estimation of some metal elements and proximate properties of Boletus edulis (Fr), a wild mushroom species in the Nigerian Savannah. Trakia J Sci. 2011;19(2). https://www.cabidigitallibrary.org/doi/full/10.5555/20113201684
  5. 5. Lu H, Lou H, Hu J, Liu Z, Chen Q. Macrofungi: A review of cultivation strategies, bioactivity and application of mushrooms. Compr Rev Food Sci Food Saf. 2020;19(5):2333-56. https://doi.org/10.1111/1541-4337.12602
  6. 6. Uzziel RG, Carrera-Martínez A, Martínez-Reyes M, Hernández-Santiago F, Evangelista FR, Irma DA, et al. Traditional knowledge and use of wild mushrooms with biocultural importance in the Mazatec culture in Oaxaca, Mexico, cradle of the ethnomycology. For Syst. 2023;32(1):e007. https://doi.org/10.5424/fs/2023321-19884
  7. 7. Sahoo S, Gayakwad T, Shahi S. Medicinal value of edible mushrooms: A review. Int J Health Sci. 2022;6:8760-7. http://doi.org/10.53730/ijhs.v6nS2.7263
  8. 8. Subbiah KA, Balan V. A comprehensive review of tropical milky white mushroom (Calocybe indica P&C). Mycobiology. 2015;43(3):184-94. https://doi.org/10.5941/myco.2015.43.3.184
  9. 9. Ferdousi J, Riyadh ZA, Hossain MI, Saha SR, Zakaria M. Mushroom production benefits, status, challenges and opportunities in Bangladesh: A review. Annu Res Rev Biol. 2020;34(6):1-3. https://doi.org/10.9734/arrb/2019/v34i630169
  10. 10. Usman M, Murtaza G, Ditta A. Nutritional, medicinal and cosmetic value of bioactive compounds in button mushroom (Agaricus bisporus): a review. Appl Sci. 2021;11(13):5943. https://doi.org/10.3390/app11135943
  11. 11. Ao T, Deb CR. Nutritional and antioxidant potential of some wild edible mushrooms of Nagaland, India. Food Sci Technol. 2019;56(2):1084-9. https://doi.org/10.1007/s13197-018-03557-w
  12. 12. Navarro-Simarro P, Gómez-Gómez L, Ahrazem O, Rubio-Moraga Á. Food and human health applications of edible mushroom by-products. N Biotechnol. 2024;81:43-56. https://doi.org/10.1016/j.nbt.2024.03.003
  13. 13. Upadhyaya J, Raut JK, Koirala N. Analysis of nutritional and nutraceutical properties of wild-grown mushrooms of Nepal. EC Microbiol. 2017;12(3):136-45.
  14. 14. Valverde ME, Hernández-Pérez T, Paredes-López O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol. 2015;2015:376387. https://doi.org/10.1155/2015/376387
  15. 15. Varghese R, Dalvi YB, Lamrood PY, Shinde BP, Nair CK. Historical and current perspectives on therapeutic potential of higher basidiomycetes: an overview. 3 Biotech. 2019;9:1886-92. https://doi.org/10.1007/s13205-019-1886-2
  16. 16. Chaudhary P, Panth N, Raut BK, Pokhrel N, Shrestha N, Shakya S, et al. Biochemical, antimicrobial and antioxidant activities of some wild mushrooms from Nepal. BIBECHANA. 2023;20(2):161-74. https://doi.org/10.3126/bibechana.v20i2.54887
  17. 17. Gebrelibanos M, Megersa N, Taddesse AM. Levels of essential and non-essential metals in edible mushrooms cultivated in Haramaya, Ethiopia. Int J Food Contam. 2016;3:2. https://doi.org/10.1186/s40550-016-0025-7
  18. 18. Keskin F, Sarikurkcu C, Akata I, Tepe B. Metal concentrations of wild mushroom species collected from Belgrad forest (Istanbul, Turkey) with their health risk assessments. Environ Sci Pollut Res. 2021;27:36193-202. https://doi.org/10.1007/s11356-021-13235-8
  19. 19. Sarikurkcu C, Yildiz D, Akata I, Tepe B. Evaluation of the metal concentrations of wild mushroom species with their health risk assessments. Environ Sci Pollut Res. 2021;28:21437-54. https://doi.org/10.1007/s11356-020-11685-0
  20. 20. Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrović P, et al. Antioxidants of edible mushrooms. Molecules. 2015;20(10):19489-525. https://doi.org/10.3390/molecules201019489
  21. 21. Royse DJ, Baars J, Tan Q. Current overview of mushroom production in the world. In: Edible and medicinal mushrooms: technology and applications. 2017. p. 5-13. https://doi.org/10.1002/9781119149446.ch2
  22. 22. Sun M, Zhuang Y, Gu Y, Zhang G, Fan X, Ding Y. A comprehensive review of the application of ultrasonication in the production and processing of edible mushrooms: drying, extraction of bioactive compounds and post-harvest preservation. Ultrason Sonochem. 2024;9:106763. https://doi.org/10.1016/j.ultsonch.2024.106763
  23. 23. Rathore H, Prasad S, Sharma S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition. 2017;5:35-46. https://doi.org/10.1016/j.phanu.2017.02.001
  24. 24. Jacinto-Azevedo B, Valderrama N, Henríquez K, Aranda M, Aqueveque P. Nutritional value and biological properties of Chilean wild and commercial edible mushrooms. Food Chem. 2021;356:129651. https://doi.org/10.1016/j.foodchem.2021.129651
  25. 25. Hamza A, Mylarapu A, Krishna KV, Kumar DS. An insight into the nutritional and medicinal value of edible mushrooms: A natural treasury for human health. J Biotechnol. 2024;381:86-99. https://doi.org/10.1016/j.jbiotec.2023.12.014
  26. 26. Adhikari M, Bhusal S, Pandey M, Raut J, Bhatt LM. Nutritional analysis of selected wild mushrooms from Gaurishankar Conservation Area. Int J Pharmacogn Chin Med. 2019;3:169. https://doi.org/10.23880/ipcm-16000169
  27. 27. Procházka P, Soukupová J, Mullen KJ, Tomšík K Jr, Čábelková I. Wild mushrooms as a source of protein: A case study from central Europe, especially the Czech Republic. Foods. 2023;12(5):934. https://doi.org/10.3390/foods12050934
  28. 28. Nakalembe I, Kabasa JD, Olila D. Indigenous knowledge and usage of wild mushrooms in Mid-Western Uganda. Afr J Anim Biomed Sci. 2009;4(1). https://www.scirp.org/reference/referencespapers?referenceid=1074918
  29. 29. Nakalembe I, Kabasa JD, Olila D. Comparative nutrient composition of selected wild edible mushrooms from two agro-ecological zones, Uganda. Springerplus. 2015;4:1-5. https://doi.org/10.1186/s40064-015-1188-z
  30. 30. Khan MA, Khan LA, Hossain MS, Tania M, Uddin MN. Investigation on the nutritional composition of the common edible and medicinal mushrooms cultivated in Bangladesh. Bangladesh J Mushroom. 2009;3(1):21-8.
  31. 31. Amin SR. Performance of different oyster mushroom (Pleurotus spp.) varieties [thesis]. Gazipur: Bangabundhu Sheikh Mujibur Rahman Agricultural University; 2002.
  32. 32. Cunniff P, Washington D. Official methods of analysis of AOAC International. J AOAC Int. 1997;80(6):127A.
  33. 33. AOAC. Official methods of analysis. Washington DC: Association of Official Analytical Chemists; 1995.
  34. 34. Kadnikova IA, Costa R, Kalenik TK, Guruleva ON, Yanguo S. Chemical composition and nutritional value of the mushroom Auricularia auricula-judae. J Food Nutr Res. 2015;3(8):478-82.
  35. 35. Islam MF, Ahsan A, Linkon MR, Sarkar AK, Satter MA, Farhana JA, et al. Comparative assessment of nutritive values and safety characteristics of bread sold in Bangladesh. Food Res. 2021;5:417-25. http://doi.org/10.26656/fr.2017.5(1).450
  36. 36. Slinkard K, Singleton VL. Total phenol analysis: Automation and comparison with manual methods. Am J Enol Vitic. 1977;28(1):49-55.
  37. 37. Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005;91(3):571-7.
  38. 38. Yang J, Chen C, Zhao S, Ge F, Liu D. Effect of solvents on the antioxidant activity of walnut (Juglans regia L.) shell extracts. J Food Nutr Res. 2014;2(9):621-6. http://doi.org/10.12691/jfnr-2-9-15
  39. 39. Gomez KA, Gomez AA. Statistical procedures for agricultural research. New York: John Wiley & Sons; 1984. p. 139-53.
  40. 40. Bhattacharjya DK, Shamsuzzaman M, Sen A, Mafi AH, Kakon AJ, et al. Evaluation of the nutritive value and metal content of prevalent edible mushrooms in Bangladesh. Res Crops. 2023;24(3):536-43. https://doi.org/10.31830/2348-7542.2023.ROC-974
  41. 41. Chelladurai G, Yadav TK, Pathak RK. Chemical composition and nutritional value of paddy straw milky mushroom (Calocybe indica). Nat Environ Pollut Technol. 2021;20(3):1157-64. https://doi.org/10.46488/NEPT.2021.v20i03.023
  42. 42. Regula J, Suliburska J, Siwulski M. Bioavailability and digestibility of nutrients from the dried oyster culinary-medicinal mushroom, Pleurotus ostreatus (Agaricomycetes): In vivo experiments. Int J Med Mushrooms. 2016;18(8). https://doi.org/10.1615/intjmedmushrooms.v18.i8.40
  43. 43. Roy AM, Isaac BR. Nutrient composition and consumer acceptability of cultivated edible mushrooms. Food Sci Indian J Res Food Sci Nutr. 2019;6:19-23. https://doi.org/10.15613/fijrfn/2019/v6i2/190523
  44. 44. Pushpa H, Purshothoma KB. Nutritional analysis of wild and cultivated edible medicinal mushrooms. World J Dairy Food Sci. 2010;5:140-4. Available from: https://www.scirp.org/reference/referencespapers?referenceid=1863312
  45. 45. Masamba KG, Kazombo-Mwale R. Determination and comparison of nutrient and mineral. Afr J Food Sci. 2010;4:176-9. https://doi.org/10.5897/AJFS.9000070
  46. 46. Lavelli V, Proserpio C, Gallotti F, Laureati M, Pagliarini E. Circular reuse of bio-resources: The role of Pleurotus spp. in the development of functional foods. Food Funct. 2018;9:1353-72. https://doi.org/10.1039/C7FO01747B
  47. 47. Khan MA, Tania M. Nutritional and medicinal importance of Pleurotus mushrooms: An overview. Food Rev Int. 2012;28:313-29. https://doi.org/10.1080/87559129.2011.637267
  48. 48. Deepalakshmi K, Sankaran M. Pleurotus ostreatus: An oyster mushroom with nutritional and medicinal properties. J Biochem Technol. 2014;5:718-26.
  49. 49. Reis GC, Guidi LR, Fernandes C, Godoy HT, Gloria MBA. UPLC-UV method for the quantification of free amino acids, bioactive amines and ammonia in fresh, cooked and canned mushrooms. Food Anal Methods. 2020;13:1613-26. https://doi.org/10.1007/s12161-020-01777-5
  50. 50. Raman J, Jang KY, Oh YL, Oh M, Im JH, Lakshmanan H, et al. Cultivation and nutritional value of prominent Pleurotus spp.: An overview. Mycobiology. 2021;49:1-14. https://doi.org/10.1080/12298093.2020.1835142
  51. 51. Alam N, Amin R, Khair A, Lee TS. Influence of different supplements on the commercial cultivation of milky white mushroom. Mycobiology. 2010;38:184-8. https://doi.org/10.4489/MYCO.2010.38.3.184
  52. 52. Bach F, Helm CV, Bellettini MB, Maciel GM, Haminiuk CWI. Edible mushrooms: a potential source of essential amino acids, glucans and minerals. Int J Food Sci. 2017;52:2382-92. https://doi.org/10.1111/ijfs.13522
  53. 53. Uju NL, Obiakor-Okeke PN. Nutritional profile of three different mushroom varieties consumed in Amaifeke, Orlu Local Government Area, Imo State, Nigeria. Food Sci Qual Manag. 2014;31:70-8.
  54. 54. Yang JH, Lin HC, Mau JL. Non-volatile taste components of several commercial mushrooms. Food Chem. 2001;72:46. https://doi.org/10.1016/S0308-8146(00)00262-4
  55. 55. Debnath G, Das P, Sah AK. Screening of toxicity test and extracellular laccase enzyme of some wild edible mushrooms of Tripura, Northeast India. Res J Life Sci Bioinform Pharm Chem Sci. 2018;4:586-93. https://doi.org/10.26479/2018.0404.52
  56. 56. Jonathan SG, Esho EO. Fungi and aflatoxin detection in two stored oyster mushrooms (Pleurotus ostreatus and Pleurotus pulmonarius) from Nigeria. Elec J Env Agricult Food Chem. 2010;9:1722-30.
  57. 57. Olayinka AA. Evaluation of the nutritional status of two edible mushroom species in Ekiti State, Nigeria. Evaluation. 2016;51:32-6.
  58. 58. Mukhopadhyay R, Guha AK. A comprehensive analysis of the nutritional quality of edible mushroom Pleurotus sajor-caju grown in deproteinized whey medium. LWT-Food Sci Technol. 2015;61:339-45. https://doi.org/10.1016/j.lwt.2014.12.055
  59. 59. Akpoghelie JO, Irerhievwie GO. Nutritional and metal composition of Lepiota procera, Boletus edulis and Boletus badius mushroom species in Owhelogbo, Isoko North Local Government Area of Delta State, Nigeria. Int J Sci Res. 2015;4:1182-5. https://www.ijsr.net/articlerating.php?paperid=SUB157356
  60. 60. Sarker NC, Hossain MM, Sultana N, Mian H, Karim AJMS, Amin SMR. Performance of different substrates on the growth and yield of Pleurotus ostreatus (Jacquin ex Fr.) Kummer. Bangladesh J Mushroom. 2007;1:9-20.
  61. 61. Deepalakshmi K, Mirunalini S. Pleurotus ostreatus: an oyster mushroom with nutritional and medicinal properties. J Biochem Technol. 2014;5:718-26.
  62. 62. Adejumo TO, Awosanya OB. Proximate and mineral composition of four edible mushroom species from South Western Nigeria. Afr J Biotechnol. 2005;4:1084-8. https://www.ajol.info/index.php/ajb/article/view/71255
  63. 63. Shbeeb DA, Farahat MF, Ismail HM. Macronutrients analysis of fresh and canned Agaricus bisporus and Pleurotus ostreatus mushroom species sold in Alexandria markets, Egypt. Prog Nutr. 2019;21:203-9. http://doi.org/10.23751/pn.v21i2-S.6453
  64. 64. Alam N, Amin R, Khan A, Ara I, Shim MJ, Lee MW, et al. Nutritional analysis of cultivated mushrooms in Bangladesh-Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus florida and Calocybe indica. Mycobiology. 2008;36:228-32. https://doi.org/10.4489/MYCO.2008.36.4.228
  65. 65. Mirończuk-Chodakowska I, Socha K, Zujko ME, Terlikowska KM, Borawska MH, Witkowska AM. Copper, manganese, selenium and zinc in wild-growing edible mushrooms from the eastern territory of “Green Lungs of Poland”: nutritional and toxicological implications. Int J Environ Res Public Health. 2019;16:3614. https://doi.org/10.3390/ijerph16193614
  66. 66. Obodai M, Ferreira ICFR, Fernandes A, Barros L, Mensah DLN, Dzomeku M, Urben, et al. Evaluation of the chemical and antioxidant properties of wild and cultivated mushrooms of Ghana. Molecules. 2014;19:19532-48. https://doi.org/10.3390/molecules191219532
  67. 67. Dowlati M, Sobhi HR, Esrafili A, FarzadKia M, Yegane M. Heavy metals content in edible mushrooms: a systematic review, meta-analysis and health risk assessment. Trends Food Sci Technol. 2021;109:527-35. https://doi.org/10.1016/j.tifs.2021.01.064
  68. 68. Ahmed S, Mahd MM, Nurnabi M, Alam MZ, Choudhury TR. Health risk assessment for heavy metal accumulation in leafy vegetables grown on tannery effluent contaminated soil. Toxicol Rep. 2022;9:346-55. https://doi.org/10.1016/j.toxrep.2022.03.009
  69. 69. Woldegiorgis AZ, Abate D, Haki GD, Ziegler GR. Antioxidant property of edible mushrooms collected from Ethiopia. Food Chem. 2014;157:30-6. http:// doi.org/10.1016/S0308-8146(00)00262-4
  70. 70. Smolskaitė L, Venskutonis PR, Talou T. Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT-Food Sci Technol. 2015;60:462-71. https://doi.org/10.1016/j.lwt.2014.08.007
  71. 71. Sifat N, Lovely F, Zihad SNK, Hossain MG, Shilpi JA, Grice ID, et al. Investigation of the nutritional value and antioxidant activities of common Bangladeshi edible mushrooms. Clin Phytosci. 2020;6:1-10.
  72. 72. Medeiros RL, Andrade GM, Crispim RB, Silva NN, Silva SA, Souza HAN, et al. Nutritional and antioxidant potential of Pleurotus djamor (Rumph. ex Fr.) Boedijn produced on agronomic wastes banana leaves and sugarcane bagasse substrates. Braz J Microbiol. 2024;55:1117-29. https://doi.org/10.1007/s42770-024-01336-8
  73. 73. Raman J, Lakshmanan H, Jang KY, Oh YL, Im JH. Nutritional composition and antioxidant activity of pink oyster mushrooms (Pleurotus djamor var. roseus) grown on a paddy straw substrate. J Mushrooms. 2020;18:189-200. http://doi.org/10.14480/JM.2020.18.3.189
  74. 74. Chowdhury MMH, Kubra K, Ahmed SR. Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Ann Clin Microb Antimicrob. 2015;14:1-6. https://doi.org/10.1186/s12941-015-0067-3
  75. 75. Egra S, Kusuma IW, Arung ET, Kuspradini H. The potential of white-oyster mushroom (Pleurotus ostreatus) as antimicrobial and natural antioxidant. Biofarmasi J Nat Prod Biochem. 2019;17:14-20. https://doi.org/10.13057/biofar/f170102
  76. 76. Okafor DC, Onuegbu NC, Odimegwu NE, Ibeabuchi JC, Njoku NE, Agunwa IM, et al. Antioxidant and antimicrobial activities of oyster mushroom. Am J Food Sci Technol. 2017;5:64-9. http://doi.org/10.31989/ffhd.v10i11.751

Downloads

Download data is not yet available.