Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Phytochemical profiling and molecular characterization of different Adenium genotypes

DOI
https://doi.org/10.14719/pst.7473
Submitted
28 January 2025
Published
21-06-2025 — Updated on 01-07-2025
Versions

Abstract

Adenium obesum, or desert rose, is a member of the Apocynaceae family and is highly valued in horticulture for its ornamental appeal and resilience in container cultivation. The current study employed Inter Simple Sequence Repeat (ISSR) markers to explore the genetic diversity of 20 distinct Adenium genotypes. ISSR markers help to identify genetic differences by targeting repeating DNA regions across the genome and they are easy to use, cost-effective and do not require prior genome information, making them useful for studying diversity in many types of organisms. In this study, ISSR analysis revealed a high level of polymorphism (81.51 %), demonstrating significant genetic variability. A total of 206 loci were identified using 25 primers, showcasing the genetic richness of the Adenium species. The genetic relationship between the genotypes was further analyzed through the Unweighted Pair Group Method with Arithmetic Mean (UPGMA), a clustering technique that grouped the genotypes based on their genetic similarities, revealing clear genetic differentiation and confirming the robustness of ISSR markers in genetic diversity studies. In addition to the genetic analysis, Gas Chromatography-Mass Spectroscopy (GC-MS) analysis of the ethanolic leaf extracts of Adenium obesum revealed the presence of 30 bioactive metabolites, including commonly identified compounds such as vitamin E, phenol, phytol and n-hexadecanoic acid. These results identified several bioactive compounds with potential medicinal properties, underscoring the pharmacological significance of the plant. Overall, this study demonstrates the effectiveness of ISSR molecular markers in both genetic evaluation and the identification of bioactive compounds in Adenium species.

References

  1. 1. Varshney RK, Graner A, Sorrells ME. Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 2005;23(1):48–55. https://doi.org/10.1016/j.tibtech.2004.11.005
  2. 2. Debener T, Bartels C, Mattiesch L. RAPD analysis of genetic variation between a group of rose cultivars and selected wild rose species. Mol Breed. 1996;2:321–27. https://doi.org/10.1007/BF00437910
  3. 3. Boy HIA, Rutilla AJH, Santos KA, Ty AMT, Alicia IY, Mahboob T, et al. Recommended medicinal plants as source of natural products: a review. Digit Chin Med. 2018;1(2):131–42. https://doi.org/10.1016/S2589-3777(19)30018-7
  4. 4. Purushotham G, Padma Y, Nabiha Y, Venkata Raju R. In vitro evaluation of anti-proliferative, anti-inflammatory and pro-apoptotic activities of the methanolic extracts of Andrographis nallamalayana Ellis on A375 and B16F10 melanoma cell lines. 3 Biotech. 2016;6:1–11. https://doi.org/10.1007/s13205-016-0529-0
  5. 5. Jeurkar MM, Kosalge SB, Sheikh NWA, Telrandhe UB. Cyperus rotundus L.: phytochemistry and pharmacological activities. Ann Phytomed. 2022;11(2):186–96. https://doi.org/10.54085/ap.2022.11.2.20
  6. 6. Seetharamu P, Sivakumar V, Sekhar D, Jogarao P, Ramarao G. A critical review of medicinal plants and usage in folk medicine in tribal area of Chintapalle region of Eastern Ghats in Andhra Pradesh. Ann Phytomed. 2023;12(2):383–92. https://doi.org/10.54085/ap.2023.12.2.47
  7. 7. Adiloğlu S. Heavy metal removal with phytoremediation. Adv Bioremedi Phytoremedi. 2018:115. https://doi.org/10.5772/intechopen.70330
  8. 8. Bamne F, Shaikh N, Momin M, Khan T, Ali A. Phytochemical analysis, antioxidant and DNA nicking protection assay of some selected medicinal plants. Ann Phytomed. 2023;12(2):406–13. https://doi.org/10.54085/ap.2023.12.2.50
  9. 9. Motadi LR, Choene MS, Mthembu NN. Anticancer properties of Tulbaghia violacea regulate the expression of p53-dependent mechanisms in cancer cell lines. Sci Rep. 2020;10(1):12924. https://doi.org/10.1038/s41598-020-69722-4
  10. 10. Kushwaha PP, Vardhan PS, Kapewangolo P, Shuaib M, Prajapati SK, Singh AK, et al. Bulbine frutescens phytochemical inhibits notch signaling pathway and induces apoptosis in triple negative and luminal breast cancer cells. Life Sci. 2019;234:116783. https://doi.org/10.1016/j.lfs.2019.116783
  11. 11. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987:19:11–15 .
  12. 12. Rohlf FJ. NTSYS-pc: numerical taxonomy and multivariate analysis system. New York, Exeter Publishing Ltd; 1988.
  13. 13. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91. https://doi.org/10.1002/jcc.21256
  14. 14. Gurung A, Ali M, Bhattacharjee A, AbulFarah M, Al-Hemaid F, Abou-Tarboush F, et al. Molecular docking of the anticancer bioactive compound proceraside with macromolecules involved in the cell cycle and DNA replication. Genet Mol Res. 2016;15(2):1–7. https://doi.org/10.4238/gmr.15027829
  15. 15. Laskowski RA, Swindells MB. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. ACS Publications; 2011. https://doi.org/10.1021/ci200227u
  16. 16. Srinivasarao M, Lakshminarasu M, Anjum A, Ibrahim M. Comparative study on phytochemical, antimicrobial and antioxidant activity of Sapindus mukorossi Gaertn. and Rheum emodi Wall. ex Meissn.: in vitro studies. Ann Phytomed. 2015;4(2):93–97.
  17. 17. Ahmed SK, Versiani MA, Ikram A, Sattar SA, Faizi S. Cytotoxic cardiac glycosides from the fruit (pods) of Adenium obesum (Forssk.) Roem. and Schult. Nat Prod Res. 2017;31(10):1205–08. https://doi.org/10.1080/14786419.2016.1226826
  18. 18. Abalaka S, Fatihu M, Ibrahim N, Ambali S. Hepatotoxicity of ethanol extract of Adenium obesum stem bark in Wistar rats. J Pharma Res Int. 2014;4(9):1041–52. https://doi.org/10.9734/BJPR/2014/7667
  19. 19. Ali AQ, Farah MA, Abou-Tarboush FM, Al-Anazi KM, Ali MA, Lee J, et al. Cytogenotoxic effects of Adenium obesum seeds extracts on breast cancer cells. Saudi J Biol Sci. 2019;26(3):547–53. https://doi.org/10.1016/j.sjbs.2018.12.014
  20. 20. Wu LC, Ho JA, Shieh MC, Lu IW. Antioxidant and anti-proliferative activities of Spirulina and Chlorella water extracts. J Agric Food Chem. 2005;53(10):4207–12. https://doi.org/10.1021/jf0479517
  21. 21. Vijayalingam T, Rajesh N. Seagrasses as potential source of fodder for livestock: complete proximate and GC–MS analysis. Ann Phytomed. 2019;8(2):93–98. https://doi.org/10.21276/ap.2019.8.2.10
  22. 22. Alshehri A, Ahmad A, Tiwari RK, Ahmad I, Alkhathami AG, Alshahrani MY, et al. In vitro evaluation of antioxidant, anticancer and anti-inflammatory activities of ethanolic leaf extract of Adenium obesum. Front Pharmacol. 2022;13:847534. https://doi.org/10.3389/fphar.2022.847534
  23. 23. Kavipriya K, Chandran M. FTIR and GCMS analysis of bioactive phytocompounds in methanolic leaf extract of Cassia alata. Biomed Pharmacol J. 2018;11(1):141–47. https://doi.org/10.13005/bpj/1355
  24. 24. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, et al. The comparison of RFLP, RAPD, AFLP and SSR markers for germplasm analysis. Mol Breed. 1996;2:225–38. https://doi.org/10.1007/BF00564200
  25. 25. Mahmood MA, Hafiz IA, Abbasi NA, Faheem M. Detection of genetic diversity in Jasminum species through RAPD techniques. Int J Pure App Biosci. 2014;2(3):312–17.
  26. 26. Bhattacharya A, da Silva JAT. Molecular systematics in Chrysanthemum× grandiflorum (Ramat.) Kitamura. Sci Hortic. 2006;109(4):379–84. https://doi.org/10.1016/j.scienta.2006.06.004
  27. 27. Prajapati P, Singh A, Patel N, Singh D, Srivastav V. Evaluation of genetic diversity in different genotypes of Gerbera jamesonii Bolus using RAPD markers. Afr J Biotechnol. 2014;13(10)1117–22. https://doi.org/10.5897/AJB2013.13347
  28. 28. Anuradha S, Gowda J, Jayaprasad K. Path coefficient analysis for floral traits in gladiolus. Crop Res J Hisar. 2000;19:70–78.
  29. 29. Prasad M. Molecular characterization and genetic diversity determination of Hibiscus species using RAPD molecular markers. Asian J Plant Sci Res. 2011.
  30. 30. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by SSR-anchored PCR amplification. Genomics. 1994;20(2):176–83. https://doi.org/10.1006/geno.1994.1151
  31. 31. Kameswari PL, Girwani A, Rani KR. Genetic diversity in tuberose (Polianthes tuberosa L.) using morphological and ISSR markers. Electron J Plant Breed. 2014;5(1):52–57.
  32. 32. Ghasemi GM, Salehi H, Khosh-Khui M, Niazi A. Application of ISSR markers to analyze molecular relationships in Iranian jasmine (Jasminum spp.) accessions. Mol Biotechnol. 2015;57:65–74. https://doi.org/10.1007/s12033-014-9802-9
  33. 33. Kameswari PL, Pratap M, Anuradha G. Detection of genetic variability in Chrysanthemum (Dendranthema grandiflora T.) using ISSR primers. Electron J Plant Breed. 2015;6(1):167–75.
  34. 34. Žukauskienė J, Paulauskas A, Varkulevičienė J, Maršelienė R, Gliaudelytė V. Genetic diversity of five different Lilium species in Lithuania revealed by ISSR markers. Am J Plant Sci. 2014.
  35. 35. Gostimsky S, Kokaeva Z, Konovalov F. Studying plant genome variation using molecular markers. Russ J Genet. 2005;41:378–88. https://doi.org/10.1007/s11177-005-0101-1
  36. 36. Anderson JA, Churchill G, Autrique J, Tanksley S, Sorrells M. Optimizing parental selection for genetic linkage maps. Genome. 1993;36(1):181–86. https://doi.org/10.1139/g93-024
  37. 37. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32(3):314.
  38. 38. De Riek J, Calsyn E, Everaert I, Van Bockstaele E, De Loose M. AFLP-based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theor Appl Genet. 2001;103:1254–65. https://doi.org/10.1007/s001220100710
  39. 39. Newbury HJ, Ford-Lloyd B. The use of RAPD for assessing variation in plants. Plant Growth Reg. 1993;12:43–51. https://doi.org/10.1007/BF00144581
  40. 40. Takatsu Y, Miyamoto M, Inoue E, Yamada T, Manabe T, Kasumi M, et al. Interspecific hybridization among wild Gladiolus species of southern Africa based on RAPD markers. Sci Hortic. 2001;91(3–4):339–48. https://doi.org/10.1016/S0304-4238(01)00260-6
  41. 41. Khansarinejad B, Hassandokht MR, Nazeri V, Soorni A. Comparison of molecular markers (RAPD, ISSR) for determination of genetic differences in two Crocus species. Intl J Farm All Sci. 2015;4:457–64.
  42. 42. Pragya P, Bhat K, Misra R, Ranjan J. Analysis of diversity and relationships among Gladiolus cultivars using morphological and RAPD markers. Indian J Agric Sci. 2010;80(9):766.
  43. 43. Sharaf-Eldin MA, Alam P, Elkholy SF. Molecular and chemical characterization of mutant and nonmutant genotypes of saffron grown in Saudi Arabia. Food Sci Nutr. 2019;7(1):247–55. https://doi.org/10.1002/fsn3.875
  44. 44. Hoque M, Zohura F. Molecular diversity analysis of some local ginger (Zingiber officinale) genotypes using RAPD markers. Int J Hortic Agric Food Sci. 2019;3(1):20–28. https://doi.org/10.22161/ijhaf.3.1.3
  45. 45. Malik K, Pal K. Genetic divergence and relationship analysis among 22 populations of Gladiolus cultivars by morphological and RAPD PCR tool. Int J Educ Sci Res Rev. 2014;1(6):1–8.
  46. 46. Mir MA, Mansoor S, Sugapriya M, Alyemeni MN, Wijaya L, Ahmad P. Deciphering genetic diversity analysis of saffron (Crocus sativus L.) using RAPD and ISSR markers. Saudi J Biol Sci. 2021;28(2):1308–17. https://doi.org/10.1016/j.sjbs.2020.11.063
  47. 47. KauBhattr S, Chawla S, Desai J, Bhatt D, Patel G. Varietal assessment and variability studies on gladiolus under South Gujarat conditions. Indian J Hortic. 2015;72(3):382–87. https://doi.org/10.5958/0974-0112.2015.00074.2

Downloads

Download data is not yet available.