Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Computational exploration of Plant Ribosome Inactivating Proteins (RIPs) in countering Snake venom: A novel therapeutic opportunity and challenges

DOI
https://doi.org/10.14719/pst.7494
Submitted
29 January 2025
Published
08-05-2025
Versions

Abstract

Snakebite envenoming represents a critical global health challenge, particularly prevalent in regions with limited access to healthcare resources, where venomous snakes pose a significant threat to human populations. Antivenom therapy which mainly rely on antibody production by immunization of large animals with venom components is labour intensive, time consuming and associated with various ethical concerns. Consequently, access to quality and affordable antivenom remains limited in many affected regions with high mortality associated with snakebites. In traditional medicine, many plant species have been ethnobotanically reported for their antivenom properties and are used to neutralize animal toxins. Ribosome-inactivating proteins (RIPs) are a diverse group of toxins found in various organisms, including plants that possess the ability to inhibit protein synthesis by irreversibly damaging the ribosomes. Even though considered to be harmful, the biological role of RIPs has gained increasing attention in recent years due to their potential therapeutic implications. With these insights, this review underscores the potential of RIPs as promising candidates for adjunct treatments in snakebite management strategies. In silico analysis by molecular docking of RIPs with major snake venom proteins resulted in effective binding and shows the interface residues involved in the interaction. This integrative approach enhances our understanding of snakebite pathophysiology, accelerating the development of novel next generation antivenom therapies that are safer and more effective.

References

  1. Mackessy SP. Venom production and secretion in reptiles. J Exp Bio. 2022;225(7):jeb227348. https://doi.org/10.1242/jeb.227348
  2. Warrell DA. Venomous animals. Med. 2016;44(2):120-24. https://doi.org/10.1016/j.mpmed.2015.11.001
  3. Maag D, Erb M, Köllner TG, Gershenzon J. Defensive weapons and defense signals in plants: some metabolites serve both roles. BioEssays. 2015;37(2):167-74. https://doi.org/10.1002/bies.201400124
  4. Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Ann Rev plant bio. 2012;63:431-50. https://doi.org/10.1146/annurev-arplant-042110-103854
  5. Kocyigit E, Kocaadam-Bozkurt B, Bozkurt O, A?agündüz D, Capasso R. Plant toxic proteins: Their biological activities, mechanism of action and removal strategies. Toxins. 2023;15(6):356. https://doi.org/10.3390/toxins15060356
  6. Chen H, Singh H, Bhardwaj N, Bhardwaj SK, Khatri M, Kim K-H, et al. An exploration on the toxicity mechanisms of phytotoxins and their potential utilities. Crit Rev Envi Sci Tech. 2022;52(3):395-435. https://doi.org/10.1080/10643389.2020.1823172
  7. Stirpe F, Gilabert-Oriol R. Ribosome-inactivating proteins: An overview. Plant Toxins; Carlini, CR, Ligabue-Braun, R, Gopalakrishnakone, P, Eds. 2015:153-82. https://doi.org/10.1007/978-94-007-6728-7_16-3
  8. Bolognesi A, Bortolotti M, Maiello S, Battelli MG, Polito L. Ribosome-inactivating proteins from plants: A historical overview. Mol. 2016;21(12):1627. https://doi.org/10.3390/molecules21121627
  9. Bolognesi A, Bortolotti M, Battelli MG, Polito L. Hyperuricaemia, xanthine oxidoreductase and ribosome-inactivating proteins from plants: The contributions of Fiorenzo Stirpe to frontline research. Mol. 2017;22(2):206. https://doi.org/10.3390/molecules22020206
  10. Stirpe F. Ribosome-inactivating proteins: From toxins to useful proteins. Toxicon. 2013;67:12-6. https://doi.org/10.1016/j.toxicon.2013.02.005
  11. Barbieri L, Valbonesi P, Righi F, Zuccheri G, Monti F, Gorini P, et al. Polynucleotide: Adenosine glycosidase is the sole activity of ribosome-inactivating proteins on DNA. J biochem. 2000;128(5):883-89. https://doi.org/10.1093/oxfordjournals.jbchem.a022827
  12. Nielsen K, Boston RS. Ribosome Inactivating Proteins: a plant perspective. Ann Rev plant bio. 2001;52(1):785-816. https://doi.org/10.1146/annurev.arplant.52.1.785
  13. Lapadula WJ, Ayub MJ. Ribosome Inactivating Proteins from an evolutionary perspective. Toxicon. 2017;136:6-14. https://doi.org/10.1016/j.toxicon.2017.06.012
  14. Peumans WJ, Van Damme EJ. Evolution of plant Ribosome Inactivating Proteins. Toxic plant proteins. 2010:1-26. https://doi.org/10.1007/978-3-642-12176-0_1
  15. Dallal JA, Irvin JD. Enzymatic inactivation of eukaryotic ribosomes by the pokeweed antiviral protein. FEBS letters. 1978;89(2):257-9. https://doi.org/10.1016/0014-5793(78)80230-0
  16. Zhu F, Zhou Y-K, Ji Z-L, Chen X-R. The plant ribosome-inactivating proteins play important roles in defense against pathogens and insect pest attacks. Front Plant Sci. 2018;9:146. https://doi.org/10.3389/fpls.2018.00146
  17. Sharma A, Gupta S, Sharma NR, Paul K. Expanding role of ribosome-inactivating proteins: From toxins to therapeutics. IUBMB life. 2023;75(2):82-96. https://doi.org/10.1002/iub.2675
  18. Frigerio L, Vitale A, Lord JM, Ceriotti A, Roberts LM. Free ricin A chain, proricin and native toxin have different cellular fates when expressed in tobacco protoplasts. J Biol Chem. 1998;273(23):14194-9. 10.1074/jbc.273.23.1419
  19. Zhu RH, Ng TB, Yeung HW, Shaw PC. High level synthesis of biologically active recombinant trichosanthin in Escherichia coli. Int J Peptide Protein Res. 1992;39(1):77-81. https://doi.org/10.1111/j.1399-3011.1992.tb01558.x
  20. Carzaniga R, Sinclair L, Fordham-Skelton AP, Harris N, Croy RR. Cellular and subcellular distribution of saporins, type-1 Ribosome Inactivating Proteins, in soapwort (Saponaria officinalis L.). Planta. 1994;194:461-70. https://doi.org/10.1007/BF00714457
  21. Das MK, Sharma RS, Mishra V. Induction of apoptosis by ribosome inactivating proteins: importance of N-glycosidase activity. App Biochem Biotech. 2012;166:1552-61. https://doi.org/10.1007/s12010-012-9550-x
  22. Moshiri M, Hamid F, Etemad L. Ricin toxicity: Clinical and molecular aspects. Rep Biochem & Mol Bio. 2016;4(2):60.
  23. Jang DH, Hoffman RS, Nelson LS. Attempted suicide, by mail order: Abrus precatorius. J med toxicol. 2010;6:427-30. https://doi.org/10.1007/s13181-010-0099-1
  24. Dickers KJ, Bradberry SM, Rice P, Griffiths GD, Vale JA. Abrin poisoning. Toxicol rev. 2003;22:137-42. https://doi.org/10.2165/00139709-200322030-00002
  25. Meng Y, Liu B, Lei N, Zheng J, He Q, Li D, et al. Alpha-momorcharin possessing high immunogenicity, immunotoxicity and hepatotoxicity in SD rats. J
  26. ethnopharmacol. 2012;139(2):590-8. https://doi.org/10.1016/j.jep.2011.11.057
  27. Walsh MJ, Dodd JE, Hautbergue GM. Ribosome Inactivating Proteins: Potent poisons and molecular tools. Virulence. 2013;4(8):774-84. https://doi.org/10.4161/viru.26399
  28. Schep LJ, Temple WA, Butt GA, Beasley MD. Ricin as a weapon of mass terror-Separating fact from fiction. Environ Int. 2009;35(8):1267-71. https://doi.org/10.1016/j.envint.2009.08.004
  29. Divakar MN, Rajesh S, Renukadevi P, Rajagopal B. Cloning, expression and in silico characterization of a truncated antiviral protein gene from Bougainvillea spectabilis Willd. Int J Curr Microbiol App Sci. 2019;8(6):2828-36. https://doi.org/10.20546/ijcmas.2019.806.341
  30. Akkouh O, Ng TB, Cheung RCF, Wong JH, Pan W, Ng CCW, et al. Biological activities of Ribosome Inactivating Proteins and their possible applications as antimicrobial, anticancer and anti-pest agents and in neuroscience research. App Microbiol Biotech. 2015;99:9847-63. https://doi.org/10.1007/s00253-015-6941-2
  31. Organization WH. Snakebite envenoming: A strategy for prevention and control. 2019.
  32. Organization WH. Snakebite envenoming 2024. https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming.
  33. Suraweera W, Warrell D, Whitaker R, Menon G, Rodrigues R, Fu SH, et al. Trends in snakebite deaths in India from 2000 to 2019 in a nationally representative mortality study. Elife. 2020;9:e54076. https://doi.org/10.7554/eLife.54076
  34. Collaborators GSE. Global mortality of snakebite envenoming between 1990 and 2019. Nature Commun. 2022;13(1):6160. https://doi.org/10.1038/s41467-022-33627-9
  35. Ralph R, Faiz MA, Sharma SK, Ribeiro I, Chappuis F. Managing snakebite. BMJ. 2022;376. https://doi.org/10.1136/bmj-2020-057926
  36. Wallach V, Williams KL, Boundy J. Snakes of the world. A Catalogue of Living and Extinct Species Boca Raton: CRC Press-Taylor & Francis Group. 2014. https://doi.org/10.1201/b16901
  37. Tednes M, Slesinger TL. Evaluation and treatment of snake envenomations. StatPearls (Internet): StatPearls Publishing; 2022.
  38. Goswami PK, Samant M, Srivastava RS. Snake venom, anti-snake venom & potential of snake venom. Int J Pharm Pharma Sci. 2014;6(5):4-7.
  39. The Reptile Database (Internet). 2023 (cited 6 February 2024). http://www.reptile-database.org.
  40. Simpson ID, Norris RL. Snakes of medical importance in India: is the concept of the “Big 4” still relevant and useful? Wild & Environ Med. 2007;18(1):2-9. https://doi.org/10.1580/06-WEME-CO-023R1.1
  41. Kerkkamp HM, Casewell NR, Vonk FJ. Evolution of the snake venom delivery system. Evol Venom Anim Toxins. 2015:1-11.
  42. Barlow A, Pook CE, Harrison RA, Wüster W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc Royal Soc B: Biol Sci. 2009;276(1666):2443-49. https://doi.org/10.1098/rspb.2009.0048
  43. Ojeda PG, Ramírez D, Alzate-Morales J, Caballero J, Kaas Q, González W. Comput stud snake venom toxins. Toxins. 2017;10(1):8. https://doi.org/10.3390/toxins10010008
  44. Santhosh MS, Hemshekhar M, Sunitha K, Thushara R, Jnaneshwari S, Kemparaju K, et al. Snake venom induced local toxicities: Plant secondary metabolites as an auxiliary therapy. Mini Rev Med Chem. 2013;13(1):106-23. https://doi.org/10.2174/138955713804484730
  45. Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite envenoming. Nature Rev Dis primers. 2017;3(1):1-21. https://doi.org/10.1038/nrdp.2017.63
  46. Toxinology Department WsCsHW. Clinical Toxinology Resources Website 2018: http://www.toxinology.com/
  47. Marcussi S, Sant'Ana CD, Oliveira CZ, Quintero Rueda A, Menaldo DL, Beleboni RO, et al. Snake venom phospholipase A2 inhibitors: medicinal chemistry and therapeutic potential. Curr Top Med Chem. 2007;7(8):743-56. https://doi.org/10.2174/156802607780487614
  48. Doley R, Zhou X, Kini RM. Snake venom phospholipase A2 enzymes. Handb Venoms Toxins Reptiles. 2010;1:173-205.
  49. Saikia D, Mukherjee AK. Anticoagulant and membrane damaging properties of snake venom phospholipase A 2 enzymes. Snake Venoms. 2017:87-104.
  50. Teixeira CdFP, Landucci E, Antunes E, Chacur M, Cury Y. Inflammatory effects of snake venom myotoxic phospholipases A2. Toxicon. 2003;42(8):947-62. https://doi.org/10.1016/j.toxicon.2003.11.006
  51. Utkin YN. Three-finger toxins, a deadly weapon of elapid venom–milestones of discovery. Toxicon. 2013;62:50-5. https://doi.org/10.1016/j.toxicon.2012.09.007
  52. Nirthanan S. Snake three-finger ?-neurotoxins and nicotinic acetylcholine receptors: Molecules, mechanisms and medicine. Biochem Pharmacol. 2020;181:114168. https://doi.org/10.1016/j.bcp.2020.114168
  53. Das D. Studies on the crude venom and purified three finger toxin of Naja kaouthia from north east India. 2015.
  54. Olaoba OT, Dos Santos PK, Selistre-de-Araujo HS, de Souza DHF. Snake venom metalloproteinases (SVMPs): A structure-function update. Toxicon: X. 2020;7:100052. https://doi.org/10.1016/j.toxcx.2020.100052
  55. Sonavane M, Almeida JR, Rajan E, Williams HF, Townsend F, Cornish E, et al. Intramuscular bleeding and formation of microthrombi during skeletal muscle damage caused by a snake venom metalloprotease and a cardiotoxin. Toxins. 2023;15(9):530. https://doi.org/10.3390/toxins15090530
  56. Teixeira CdFP, Fernandes CM, Zuliani JP, Zamuner SF. Inflammatory effects of snake venom metalloproteinases. Memórias do Instituto Oswaldo Cruz. 2005;100:181-84. https://doi.org/10.1590/S0074-02762005000900031
  57. Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis. Biochimica et Biophysica Acta (BBA)-Protein Struc Mol Enzymol. 2000;1477(1-2):146-56. https://doi.org/10.1016/S0167-4838(99)00268-X
  58. Kini RM. Serine proteases affecting blood coagulation and fibrinolysis from snake venoms. Pathophysiol Haemost Thromb. 2006;34(4-5):200-04. https://doi.org/10.1159/000092424
  59. Dias da Silva W, De Andrade SA, Megale AA, De Souza DA, Sant'Anna OA, Magnoli FC, et al. Antibodies as snakebite antivenoms: Past and future. Toxins (Basel). 2022;14(9). https://doi.org/10.3390/toxins14090606
  60. Ratanabanangkoon K. Polyvalent Snake Antivenoms: Production strategy and their therapeutic benefits. Toxins. 2023;15(9):517. https://doi.org/10.3390/toxins15090517
  61. Tan CH. Snake Venomics: Fundamentals, recent updates and a look to the next decade. Toxins. 2022;14(4):247. https://doi.org/10.3390/toxins14040247
  62. Alangode A, Rajan K, Nair BG. Snake antivenom: Challenges and alternate approaches. Biochem Pharmacol. 2020;181:114135. https://doi.org/10.1016/j.bcp.2020.114135
  63. Casewell NR, Jackson TN, Laustsen AH, Sunagar K. Causes and consequences of snake venom variation. Trends in Pharmacol Sci. 2020;41(8):570-81. https://doi.org/10.1016/j.tips.2020.05.006
  64. Modahl CM, Brahma RK, Koh CY, Shioi N, Kini RM. Omics technologies for profiling toxin diversity and evolution in snake venom: Impacts on the discovery of therapeutic and diagnostic agents. Ann Rev Anim Biosci. 2020;8:91-116. https://doi.org/10.1146/annurev-animal-021419-083626
  65. Gajbhiye RK, Munshi H, Bawaskar HS. National programme for prevention & control of snakebite in India: Key challenges & recommendations. Indian J Med Res. 2023;157(4):271-75.
  66. Vanuopadath M, Rajan K, Alangode A, Nair SS, Nair BG. The need for next-generation antivenom for snakebite envenomation in india. Toxins. 2023;15(8):510. https://doi.org/10.3390/toxins15080510
  67. Mukherjee AK, Mackessy SP. Prevention and improvement of clinical management of snakebite in Southern Asian countries: a proposed road map. Toxicon. 2021;200:140-52. https://doi.org/10.1016/j.toxicon.2021.07.008
  68. Poddar S, Sarkar T, Choudhury S, Chatterjee S, Ghosh P. Indian traditional medicinal plants: A concise review. Int J Bot Stud. 2020;5(5):174-90.
  69. MS V, More VS, Zameer F, Muddapur U, More SS. Ethnomedicinal plants and isolated compounds against Snake venom activity: A review. 2021.
  70. Magowska A. The natural history of the concept of antidote. Toxicol Rep. 2021;8:1305-09.
  71. Deshpande AM, Sastry KV, Bhise SB. A contemporary exploration of traditional Indian snake envenomation therapies. Trop Med Infect Dis. 2022;7(6):108. https://doi.org/10.1016/j.toxrep.2021.06.019
  72. Premendran SJ, Salwe KJ, Pathak S, Brahmane R, Manimekalai K. Anti-cobra venom activity of plant Andrographis paniculata and its comparison with polyvalent anti-snake venom. J Nat Sci Biol Med. 2011;2(2):198-204.
  73. Singh S, Saxena N. Traditional healing practices for treatment of animal bites among tribes of India: A systematic review. Indian J Trad Knowl. (IJTK). 2023;22(3):638-45.
  74. Bala AA, Mohammed M, Umar S, Ungogo MA, Hassan MA-K, Abdussalam US, et al. Pre-clinical efficacy of African medicinal plants used in the treatment of snakebite envenoming: A systematic review. Toxicon. 2023:107035. https://doi.org/10.1177/20499361211072644
  75. Mogha NG, Kalokora OJ, Amir HM, Kacholi DS. Ethnomedicinal plants used for treatment of snakebites in Tanzania–a systematic review. Pharm Bio. 2022;60(1):1925-34. https://doi.org/10.1080/13880209.2022.2123942
  76. Liaqat A, Mallhi TH, Khan YH, Khokhar A, Chaman S, Ali M. Anti-snake venom properties of medicinal plants: A comprehensive systematic review of literature. Brazilian J Pharm Sci. 2022:58. https://doi.org/10.1590/s2175-97902022e191124
  77. Upasani SV, Upasani MS. Plants from northeast India utilize in snakebite treatment: An Ethanobotanical review. 2021.
  78. Gbolade AA. Nigerian medicinal plants with anti-snake venom activity-A review. J Malar Res phytomedicine. 2021;4:29-44.
  79. Omara T, Kagoya S, Openy A, Omute T, Ssebulime S, Kiplagat KM, et al. Antivenin plants used for treatment of snakebites in Uganda: ethnobotanical reports and pharmacological evidences. Trop Med Health. 2020;48:1-16. https://doi.org/10.1186/s41182-019-0187-0
  80. Dey A, De JN. Traditional use of plants against snakebite in Indian subcontinent: A review of the recent literature. Afr J Tradit Complement Altern Med. 2012;9(1):153-74.
  81. Gómez-Betancur I, Gogineni V, Salazar-Ospina A, León F. Perspective on the therapeutics of anti-snake venom. Mol. 2019;24(18). https://doi.org/10.3390/molecules24183276
  82. Singh P, Yasir M, Hazarika R, Sugunan S, Shrivastava R. A review on venom enzymes neutralizing ability of secondary metabolites from medicinal plants. J Pharmacopuncture. 2017;20(3):173-78.
  83. Adrião AA, Dos Santos AO, de Lima EJ, Maciel JB, Paz WH, da Silva F, et al. Plant-derived toxin inhibitors as potential candidates to complement antivenom treatment in snakebite envenomations. Front Immunol. 2022;13:842576. https://doi.org/10.3389/fimmu.2022.842576
  84. Sofyantoro F, Yudha DS, Lischer K, Nuringtyas TR, Putri WA, Kusuma WA, et al. Bibliometric analysis of literature in snake venom-related research worldwide (1933–2022). Anim. 2022;12(16):2058. https://doi.org/10.3390/ani12162058
  85. Aruwa CE, Mukaila YO, Ajao AA-n, Sabiu S. An appraisal of antidotes’ effectiveness: Evidence of the use of phyto-antidotes and biotechnological advancements. Mol. 2020;25(7):1516. https://doi.org/10.3390/molecules25071516
  86. Félix-Silva J, Silva-Junior AA, Zucolotto SM, Fernandes-Pedrosa MF. Medicinal plants for the treatment of local tissue damage induced by snake venoms: An overview from traditional use to pharmacological evidence. Evid Based Complement Alternat Med. 2017;2017:5748256. https://doi.org/10.1155/2017/5748256
  87. H.M. Berman JW, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne. The protein data bank. Nucleic Acids Res. 2000;28:235-42. https://doi.org/10.1093/nar/28.1.235
  88. Sharma N, Naorem LD, Jain S, Raghava GPS. ToxinPred2: An improved method for predicting toxicity of proteins. Brief Bioinform. 2022;23(5). https://doi.org/10.1093/bib/bbac174
  89. Vulfius CA, et al., Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors. PLoS One. 2017;12(10):p.e0186206. https://doi.org/10.1371/journal.pone.0186206
  90. Hiremath K, Dodakallanavar J, Sampat GH, Patil VS, Harish DR, Chavan R, et al. Three finger toxins of elapids: Structure, function, clinical applications and its inhibitors. Molecular Diversity. 2023:1-18. https://doi.org/10.1007/s11030-023-10734-3
  91. Gutiérrez JM, Escalante T, Rucavado A, Herrera C, Fox JW . A comprehensive view of the structural and functional alterations of extracellular matrix by snake venom metalloproteinases (SVMPs): Novel perspectives on the pathophysiology of envenoming. Toxins. 2016;8(10):304. https://doi.org/10.3390/toxins8100304
  92. Aoki-Shioi N, CY Koh and RM Kini. Natural inhibitors of snake venom metalloproteinases. Australian Journal of Chemistry. 2020;73(4):277-86.
  93. Cherifi F, F Laraba-Djebari. Bioactive molecules derived from snake venoms with therapeutic potential for the treatment of thrombo-cardiovascular disorders associated with COVID-19. The Protein Journal.2021:1-43. https://doi.org/10.1007/s10930-021-10019-4
  94. Ling L, Wen J, Tao L, Zhao M, Ge W, Wang L, et al. RIP1 and RIP3 contribute to Tributyltin-induced toxicity in vitro and in vivo. Chemosphere. 2019;218:589-98. https://doi.org/10.1016/j.chemosphere.2018.11.140
  95. Jenkins TP, Fryer T, Dehli RI, Jürgensen JA, Fuglsang-Madsen A, Føns S, et al. Toxin neutralization using alternative binding proteins. Toxins. 2019;11(1):53. https://doi.org/10.3390/toxins11010053
  96. Landi N, Ciaramella V, Ragucci S, Chambery A, Ciardiello F, Pedone PV, et al. A novel EGFR targeted immunotoxin based on cetuximab and Type 1 RIP quinoin overcomes the cetuximab resistance in colorectal cancer cells. Toxins. 2023;15(1):57. https://doi.org/10.3390/toxins15010057
  97. Khan SU. Therapeutic application of genetically engineered ribosome-inactivating toxin proteins for cancer. Journal ISSN. 2021;2766:2276.
  98. Flavell DJ, Flavell SU. Plant-derived Type I Ribosome Inactivating Protein-based targeted toxins: A review of the clinical experience. Toxins. 2022;14(8):563. https://doi.org/10.3390/toxins14080563
  99. Lu J-Q, Zhu Z-N, Zheng Y-T, Shaw P-C. Engineering of ribosome-inactivating proteins for improving pharmacological properties. Toxins. 2020;12(3):167. https://doi.org/10.3390/toxins12030167
  100. Miranda A, Ismail H, Martien R, Ciptasari UH, Kusniasari A, Arimurni DA, et al. Double-Coated Nanoparticle of Ribosome Inactivating Protein (RIP) from Mirabilis jalapa L. prepared from Chitosan-Sodium Tripolyphosphate and Alginate-Calcium Chloride: The New Strategy for Protein Drug in Oral Delivery. BIO Web of Conferen; 2023: EDP Sciences. https://doi.org/10.1051/bioconf/20237504001
  101. Pizzo E, Di Maro A. A new age for biomedical applications of Ribosome Inactivating Proteins (RIPs): from bioconjugate to nanoconstructs. J Biomed Sci. 2016;23(1):54. https://doi.org/10.1186/s12929-016-0272-1
  102. Tasoulis T, Isbister GK. A current perspective on snake venom composition and constituent protein families. Arch Toxicol. 2023;97(1):133-53. https://doi.org/10.1007/s00204-022-03420-0
  103. Tasoulis T, Isbister GK. A review and database of snake venom proteomes. Toxins. 2017;9(9):290. https://doi.org/10.3390/toxins9090290
  104. Polito L, Bortolotti M, Maiello S, Battelli MG, Bolognesi A. Plants producing Ribosome-Inactivating Proteins in traditional medicine. Mol. 2016;21(11). https://doi.org/10.3390/molecules21111560
  105. Schrot J, Weng A, Melzig MF. Ribosome-inactivating and related proteins. Toxins. 2015;7(5):1556-615. https://doi.org/10.3390/toxins7051556
  106. Gupta YK, Peshin SS. Do herbal medicines have potential for managing snake bite envenomation? Toxicol Int. 2012;19(2):89-99.
  107. Shendge PN, Belemkar S. Therapeutic Potential of Luffa acutangula: A Review on Its Traditional Uses, Phytochemistry, Pharmacology and Toxicological Aspects. Front Pharmacol. 2018;9:1177. https://doi.org/10.3389/fphar.2018.01177
  108. Jabbari M, Daneshfard B, Emtiazy M, Khiveh A, Hashempur MH. Biological effects and clinical applications of dwarf elder (Sambucus ebulus L): A review. J Evid Based Complementary Altern Med. 2017;22(4):996-1001. https://doi.org/10.1177/2156587217701322
  109. Yego KK, et al. Snake-Antivenom Activities of Aqueous Extracts of Amaranthus spinosus L. against Naja subfulva venom. Methods. 10:11.
  110. Patel BP, PK Singh. Viscum articulatum Burm. f. A review on its phytochemistry, pharmacology and traditional uses. Journal of Pharmacy and Pharmacology. 2018;70(2):159-77. https://doi.org/10.1111/jphp.12837
  111. Reddy AV, Suresh J, Yadav HK, Singh A . A Review on Curcuma longa. Research Journal of Pharmacy and Technology. 2012;5(2):158-65.
  112. Vejayan J, H Ibrahim and I Othman. The potential of Mimosa pudica (Mimosaceae) against snake envenomation. Journal of Tropical Forest Science. 2007:189-97.
  113. Vineetha MS, Bhavya J, Veena SM, Mirajkar KK, Muddapur U, Ananthraju KS, et al . In vitro and in vivo inhibitory effects of Tabernaemontana alternifolia against Naja naja venom. Saudi Pharm J. 2020;28(6):692-97. https://doi.org/10.1016/j.jsps.2020.04.01
  114. Salazar M, Cherigo L, Acosta H, Otero R, Luis SM. Evaluation of anti-Bothrops asper venom activity of ethanolic extract of Brownea rosademonte leaves. Acta Pharmaceutica. 2014;64(4):475-84. https://doi.org/10.2478/acph-2014-0033
  115. Gómez-Betancur I, Benjumea D, Patiño A, Jiménez N, Osorio E. Inhibition of the toxic effects of Bothrops asper venom by pinostrobin, a flavanone isolated from Renealmia alpinia (Rottb.) MAAS. Journal of Ethnopharmacology. 2014;155(3):1609-15. https://doi.org/10.1016/j.jep.2014.08.002
  116. Dal Belo C, Colares AV, Leite GB, Ticli FK, Sampaio SV, Cintra AC, et al. Antineurotoxic activity of Galactia glaucescens against Crotalus durissus terrificus venom. Fitoterapia. 2008;79(5):378-80. https://doi.org/10.1016/j.fitote.2008.04.003
  117. Ode O, I Asuzu. The anti-snake venom activities of the methanolic extract of the bulb of Crinum jagus (Amaryllidaceae). Toxicon. 2006;48(3):331-42. https://doi.org/10.1016/j.toxicon.2006.06.003
  118. Tasoulis T, Isbister GK. A review and database of snake venom proteomes. Toxins. 2017;9(9):290. https://doi.org/10.3390/toxins9090290

Downloads

Download data is not yet available.