Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Comparative analysis of natural and supplemental pollination through pollen suspension on neem (Azadirachta indica A. Juss) fruit set and morphological characteristics

DOI
https://doi.org/10.14719/pst.7512
Submitted
30 January 2025
Published
08-05-2025
Versions

Abstract

A supplemental pollination system is crucial when natural pollinators are unavailable or unreliable, as alternative management strategies are necessary to ensure adequate pollination in pollination-dependent trees. Supplemental pollination controls pollen quantity, timing and frequency, resulting in increased yields, improved fruit quality and reduced fruit abortion. In a comparative study of pollination methods, hand pollination using a brush yielded the highest fertilization rate (5.54 ± 0.03 %), followed by a 1 % pollen mixture with 0.2 M basal sucrose solution and 0.01 % Gelrite (5.09 ± 0.21 %). A mixture of 1 % pollen grains with 10 ppm boric acid produced a fertilization rate of 4.75 ± 0.14 %. Hand pollination resulted in the highest fruit production, with 313 ± 43 fruits, while the sucrose solution treatment yielded 287 ± 8 fruits and the boric acid treatment produced 273 ± 12 fruits. In contrast, closed pollination recorded the lowest yield, with only 14 ± 7 fruits. Morphological assessments of neem fruits and seeds revealed that the boric acid treatment (1 % pollen grains and 10 ppm boric acid) achieved the best results, producing the most significant fruits and seeds. Conversely, the sucrose solution and Gelrite treatment showed the lowest values for fruit weight and fruit-to-seed ratio, highlighting the effectiveness of boric acid in enhancing neem fruit and seed morphology.

References

  1. Kumaran K, Surendran C, Palani M. Effect of presowing chemical treatment on germination and seedling growth in Neem (Azadirachta indica A. Juss.). Indian J Fores. 1996;19(1):878.
  2. Prabakaran P, Kumaran K, Radhakrishnan S, Umarani R. Correlation studies on Neem (Azadirachta indica A. Juss) concerning flower to fruit conversion. Int J Chem Res. 2020; 30:01–6.
  3. Babalola OO. Beneficial bacteria of agricultural importance. Biotechnol Lett. 2010; 32:1559–70. https://doi.org/
  4. 1007/s10529-010-0347-0
  5. FAOSTAT. Global neem seed production data [internet]. Rome: Food and Agriculture Organization of the United Nations; 2021.available from: www.fao.org
  6. Agren J. Population size, pollinator limitation and seed set in the self?incompatible herb Lythrum salicaria. Ecol. 1996;77(6):1779–90. https://doi.org/10.2307/2265783
  7. Bierzychudek P. Pollinator limitation of plant reproductive effort. The Am Nat. 1981;117(5):838–40. https://doi.org/
  8. 1086/283773
  9. Rathcke B. Competition and facilitation among plants for pollination. In: Real L, editor. Pollination Biology. Orlando: Academic Press; 1983. p. 305–29. https://doi.org/10.1016/B978-0-12-583980-8.50019-3
  10. Sornsathapornkul P. Breeding System of Azadirachta indica A. Juss. var. siamensis. J For. 2000;2(2):66–83.
  11. Singh P, Tiwari M. Review on Azadirachta Indica. Int J Pharm Life Sci. 2021;2:28–33. https://doi.org/33545/ 27072827.2021.v2.i1a.24
  12. Wurz A, Grass I, Tscharntke T. Hand pollination of global crops–a systematic review. Basic Appl Ecol. 2021; 56:102–13. https://doi.org/10.1016/j.baae.2021.08.008
  13. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, et al. Importance of pollinators in changing landscapes for world crops. Proc R Soc B: Biol Sci. 2007;274(1608):303–13. https://doi.org/10.1098/rspb.
  14. 3721
  15. Holland JM, Sutter L, Albrecht M, Jeanneret P, Pfister SC, Schirmel J, et al. Moderate pollination limitation in some entomophilous crops of Europe. Agric Ecosyst Environ. 2020;302:107002. https://doi.org/10.1016/j.agee.2020.107002
  16. Reilly J, Artz D, Biddinger D, Bobiwash K, Boyle N, Brittain C, Elle E. Crop production in the USA is frequently limited by a lack of pollinators. Proc R Soc B. 2020;287(1931):20200922. https://doi.org/10.1098/rspb.2020.0922
  17. Gonzalez M, Coque M, Herrero M. Influence of pollination systems on fruit set and fruit quality in kiwifruit (Actinidia deliciosa). Ann Appl Biol. 1998;132(2):349–55. https://doi.org/10.1111/j.1744-7348.1998.tb05210.x
  18. Westerkamp C, Gottsberger G. Diversity pays in crop pollination. Crop Sci. 2000;40(5):1209–22. https://doi.org/ 10.2135/cropsci2000.4051209x
  19. Frankel R, Galun E. Pollination mechanisms, reproduction and plant breeding. 2nd ed. Berlin: Springer Science & Business Media; 2012.
  20. Naik S. Effect of pollination methods on the fruit set, yield and quality of Kiwi fruit (Actinidia deliciosa Liang and Ferguson) [Masters’ thesis]. Solan: Dr. Yashwant Singh Parmar University of Horticulture and Forestry; 2014.
  21. Tandon R. Reproductive biology of Azadirachta indica (Meliaceae), a medicinal tree species from arid zones. Plant Species Biol. 2011;26(1):116–23. https://doi.org/10.1111/j.1442-1984.2010.00311.x
  22. Cruden RW. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evol. 1977;31(1):32–46. https://doi.org/10.2307/2407542
  23. Kato Y, Araki K, Ohara M. Breeding system and floral visitors of Veratrum album subsp. oxysepalum (Melanthiaceae). Plant Species Biol. 2009;24(1):42–6. https://doi.org/10.1111/j.1442-1984.2009.00231.x
  24. Shivanna K, Johri BM. The angiosperm pollen: structure and function. New Delhi: Wiley Eastern; 1985.
  25. Mascarenhas J. Molecular mechanisms of pollen tube growth and differentiation. The Plant Cell. 1993;5(10):1303–14. https://doi.org/10.2307/3869783
  26. Sakamoto D, Hayama H, Ito A, Kashimura Y, Moriguchi T, Nakamura Y. Spray pollination as a labor-saving pollination system in Japanese pear (Pyrus pyrifolia Nakai): development of the suspension medium. Sci Hortic. 2009;119(3):280–85. https://doi.org/10.1016/j.scienta.2008.08.009
  27. González JC, Villatoro VP. Conservation del pollen de Olive (Olea europaea L.) a largo plaza. Métodos "in vivo" e in vitro para la estimation de su validate. Fruticultura Profesional. 2005;149(12):20–30.
  28. Cuevas J, Polito VS. The Role of Staminate Flowers in the Breeding System of Olea europaea (Oleaceae): An Andromonoecious, Wind?Pollinated Taxon. Ann Bot. 2004;93(5):547–53. https://doi.org/10.1093/aob/mch079
  29. Vaknin Y. Effects of immaturity on productivity and nut quality in pistachio (Pistacia vera L.). J Hort Sci Biotechnol. 2006;81(4):593–8. https://doi.org/10.1080/14620316.2006.11512110
  30. Pashte V, Kulkarni R. Role of pollinators in qualitative fruit crop production: a review. Biosci Trends. 2015;8(15):3743–9.
  31. Shorrocks VM. The occurrence and correction of boron deficiency. Plant and Soil. 1997;193(1/2):121–48. https://doi.org/10.1023/A:1004216126069
  32. Marschner H. Marschner’s mineral nutrition of higher plants. 3rd ed. London: Academic Press; 2012.
  33. Stanley RG, Linskens HF. Pollen: Biology, biochemistry, management. Berlin: Springer; 1974. https://doi.org/
  34. 1007/978-3-642-65905-8
  35. Sparrow AH, Pearson OH. Effects of sucrose on growth and reproduction in plants. Plant Physiol. 1973;51(3):421–5. https://doi.org/10.1104/pp.51.2.421
  36. Heslop-Harrison J. Control of pollen tube growth. Ann Botany. 2000;85(1):75–88. https://doi.org/10.1006/anbo.
  37. 1080
  38. Free JB. Insect pollination of crops. 2nd ed. London: Academic Press; 1993.

Downloads

Download data is not yet available.