Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Identification of bioactive metabolites in Turnera ulmifolia: Preliminary phytochemical screening and FTIR analysis

DOI
https://doi.org/10.14719/pst.7515
Submitted
30 January 2025
Published
23-04-2025
Versions

Abstract

Turnera ulmifolia L., a member of the Passifloraceae family, is widely distributed across tropical and subtropical regions. Though frequently considered a weed, it has been commonly used in folk medicine to treat inflammation, infections, wounds and digestive ailments. Earlier studies have found alkaloids, flavonoids, tannins, terpenoids and polyphenols in species from the same genera that contribute to their therapeutic efficacy. Despite its ethnomedicinal value, the phytochemical profile and functional group characterization of T. ulmifolia are still unexplored. This study aimed to investigate the phytochemical composition of its leaf, stem and root extracts using different solvents (methanol, ethanol, hexane and acetone) and identify key functional groups through FTIR analysis. Phytochemical screening confirmed the presence of diverse secondary metabolites. FTIR analysis further revealed functional groups such as O=C=O, C=C and S=O, which are associated with therapeutic properties. Notably, alkaloids were abundant in leaf extracts, while sulfoxide groups, known for their herbicidal and medicinal effects, were detected in the stem. These findings reinforce the pharmacological potential of T. ulmifolia as a promising source of bioactive metabolites with medicinal and ecological applications. Its capacity to diversify in various habitats and create bioactive molecules under stress points to possible uses in medicine discovery, sustainable agriculture and environmental restoration. This study lays the groundwork for future research to validate its therapeutic potential and explore its integration into modern pharmaceutical and ecological solutions.

References

  1. Di Minin E, Brooks TM, Toivonen T, Butchart SH, Heikinheimo V, Watson JE, et al. Identifying global centers of unsustainable commercial harvesting of species. Sci Adv. 2019;5(4):eaau2879. https://doi.org/10.1126/sciadv.aau2879
  2. Alum EU. Climate change and its impact on the bioactive compound profile of medicinal plants: implications for global health. Plant Signal Behav. 2024 19(1):2419683. https://doi.org/10.1080/15592324.2024.241968
  3. Sopjani M, Falco F, Impellitteri F, Guarrasi V, Nguyen Thi X, Dërmaku?Sopjani M, et al. Flavonoids derived from medicinal plants as a COVID-19 treatment. Phytother Res. 2024;38(3):1589–609. https://doi.org/10.1002/ptr.8123
  4. Cherrada N, Elkhalifa Chemsa A, Gheraissa N, Zaater A, Benamor B, Ghania A, et al. Antidiabetic medicinal plants from the Chenopodiaceae family: a comprehensive overview. Int J Food Prop. 2024;27(1):194–213. https://doi.org/10.1080/10942912.2023.2301576
  5. Ravindra B. Malabadi, Sadiya Mr, Prathima Tc, Kiran P. Kolkar, Simuzar S. Mammadova, Raju K. Chalannavar. Cannabis sativa: Cervical cancer treatment- Role of phytocannabinoids-A story of concern. World J Biol Pharm Health Sci. 2024;17(2):253–96. https://doi.org/10.30574/wjbphs.2024.17.2.0076
  6. Gunawardhana CB, Ranasinghe SJ, Waisundara VY. Review: Mimosa pudica Linn.: the garden weed with therapeutic properties. Israel J Plant Sci, 2015;62(4):234–41. https://doi.org/10.1080/07929978.2015.1066997
  7. Arbo MM, Mazza SM. The major diversity centre for Neotropical Turneraceae. Syst Biodivers. 2011;9(3):203–10. https://doi.org/10.1080/14772000.2011.603382
  8. Rocha L. First record of Turnera ulmifolia L. (Turneraceae) as introduced in Brazil. Phytotaxa. 2020;449(2):195–9. https://doi.org/10.11646/phytotaxa.449.2.8
  9. Kumar S, Taneja R, Sharma A. The Genus Turnera .: A review update. Pharm Biol. 2005;43(5):383–91. https://doi.org/10.1080/13880200590962926
  10. Layek U, Das N, Samanta A, Karmakar P. Impact of seasonal atmospheric factors and photoperiod on floral biology, plant–pollinator interactions and plant reproduction on Turnera ulmifolia L. (Passifloraceae). Biol. 2025;14(1):100. https://doi.org/2079-7737/14/1/100
  11. Dutton EM, Shore JS, Frederickson ME. Extrafloral nectar increases seed removal by ants in Turnera ulmifolia. Biotropica. 2016;48(4):429–32. https://doi.org/10.1111/btp.12342
  12. Salazar-Rojas B, Rico-Gray V, Canto A, Cuautle M. Seed fate in the Myrmecochorous Neotropical plant Turnera ulmifolia L., from plant to germination. Acta Oecol. 2012; 40:1–10. https://doi.org/10.1016/j.actao.2012.01.010
  13. Sidi M, Omar D, Adam NA, Muhamad R. Effect of present and treated Turnera ulmifolia L. on bagworm and natural enemies population in oil palm plantation. AgroTech Food Sci Technol Environ. 2023;2(2):49–61. https://doi.org/10.53797/agrotech.v2i2.7.2023
  14. Coutinho HD, Costa JG, Lima EO, Falcão-Silva VS, Siqueira Júnior JP. Herbal therapy associated with antibiotic therapy: potentiation of the antibiotic activity against methicillin–resistant Staphylococcus aureus by Turnera ulmifolia L. BMC Complement Altern Med. 2009;9(1):13. https://doi.org/10.1186/1472-6882-9-13
  15. Oliveira AF, Junior LM, Lima AS, Silva CR, Ribeiro MN, Mesquista JW, et al. Anthelmintic activity of plant extracts from Brazilian savanna. Vet Parasitol. 2017;236:121–7. https://doi.org/10.1016/j.vetpar.2017.02.005
  16. Brito NJN, López JA, Nascimento MAD, Macêdo JBM, Silva GA, Oliveira CN, et al. Antioxidant activity and protective effect of Turnera ulmifolia Linn. var. elegans against carbon tetrachloride-induced oxidative damage in rats. Food Chem Toxicol. 2012;50(12):4340–7. https://doi.org/10.1016/j.fct.2012.08.003
  17. Chandrasekhar N, Vinay SP. Yellow colored blooms of Argemone mexicana and Turnera ulmifolia mediated synthesis of silver nanoparticles and study of their antibacterial and antioxidant activity. Appl Nanosci. 2017;7(8):851–61. https://doi.org/10.1007/s13204-017-0624-5
  18. Shekhawat MS, Kannan N, Manokari M, Ramanujam MP. An efficient micropropagation protocol for high-frequency plantlet regeneration from the liquid culture of nodal tissues in a medicinal plant, Turnera ulmifolia L. J Sustain For. 2014;33(4):327–36. https://doi.org/10.1080/10549811.2013.847793
  19. Viel AM, Figueiredo CCM, Granero FO, Silva LP, Ximenes VF, Godoy TM, et al. Antiglycation, antioxidant and cytotoxicity activities of crude extract of Turnera ulmifolia L. before and after microencapsulation process. J Pharm Biomed Anal. 2022;219:114975. https://doi.org/10.1016/j.jpba.2022.114975
  20. Tsun-Thai Chai. Whole-plant profiling of total phenolic and flavonoid contents, antioxidant capacity and nitric oxide scavenging capacity of Turnera subulata. J Med Plants Res. 2012;6(9). http://doi.org/10.5897/JMPR11.1541
  21. Alqethami A, Aldhebiani AY. Medicinal plants used in Jeddah, Saudi Arabia: Phytochemical screening. Saudi J Biol Sci. 2021;28(1):805–12. https://doi.org/10.1016/j.sjbs.2020.11.013
  22. Nortjie E, Basitere M, Moyo D, Nyamukamba P. Extraction methods, quantitative and qualitative phytochemical screening of medicinal plants for antimicrobial textiles: A review. Plants. 2022;11(15):2011. https://doi.org/10.3390/plants11152011
  23. Kumar KA, Manickam MS, Sreejith M, Sebastin V. Preliminary phytochemical evaluation, isolation and spectroscopic characterization of constituents in the dried extracts of the whole plant Crotalaria biflora (L). Int J Pharma Bio Sci. 2020;10(5):P124–33. http://doi.org/10.22376/ijpbs/lpr.2020.10.5.P124-133
  24. Sudira IW, Merdana IM, Qurani SN. Preliminary phytochemical analysis of guava leaves (Psidium guajava L.) extract as antidiarrheal in calves. Adv Trop Biodivers Environ Sci. 2019;3(2):21. http://doi.org/10.24843/atbes.v03.i02.p01
  25. Orengo KO, Mbaria JM, Ndichu M, Jafred K, Okumu MO. Preliminary phytochemical composition and in vitro anthelmintic activity of aqueous and ethanol extracts of Olea africana against mixed gastrointestinal worms in dogs. Evid Based Complement Alternat Med. 2022;2022(1):5224527. https://doi.org/10.1155/2022/5224527
  26. Farooq S, Shaheen G, Asif HM, Aslam MR, Zahid R, Rajpoot SR, et al. Preliminary phytochemical analysis: In-vitro comparative evaluation of anti-arthritic and anti-inflammatory potential of some traditionally used medicinal plants. Dose-Response. 2022 ;20(1):15593258211069720. https://doi.org/10.1177/15593258211069720
  27. Hossain MdM, Uddin MS, Baral PK, Ferdus M, Bhowmik S. Phytochemical screening and antioxidant activity of Ipomoea hederifolia stems: A potential medicinal plant. Asian J Nat Prod Biochem. 2022;20(2):41–7. https://doi.org/10.13057/biofar/f200201
  28. Singh V, Kumar R. Study of Phytochemical Analysis and Antioxidant Activity of Allium sativum of Bundelkhand Region. Int J Life-Sci Sci Res. 2017;3(6):1451–8. http://doi.org/10.21276/ijlssr.2017.3.6.4
  29. Kumar R, Sharma S, Devi L. Investigation of Total Phenolic, Flavonoid Contents and Antioxidant Activity from Extracts of Azadirachta indica of Bundelkhand Region. Int J Life-Sci Res. 2018;4(4):1925–33. http://doi.org/10.21276/ijlssr.2018.4.4.10
  30. Shaikh JR, Patil M. Qualitative tests for preliminary phytochemical screening: An overview. Int J Chem Stud. 2020;8(2):603–8. https://doi.org/10.22271/chemi.2020.v8.i2i.8834
  31. Zhang L, Xu M, Guan Q, Jiang J, Sun K, Manirafasha E. Determination of vegetable tannins from plants in China. Biofuels Bioprod Biorefining. 2023;17(3):592–601. https://doi.org/10.1002/bbb.2467
  32. Ghaffar N, Perveen A. Solvent polarity effects on extraction yield, phenolic content and antioxidant properties of Malvaceae family seeds: a comparative study. N Z J Bot. 2024;1–11. https://doi.org/10.1080/0028825.2024.2392705
  33. Dey P, Kundu A, Kumar A, Gupta M, Lee BM, Bhakta T, et al. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In: Recent Advances in Natural Products Analysis. Elsevier; 2020. p. 505–67. https://doi.org/10.1016/B978-0-12-816455-6.00015-9
  34. Nkwocha CC, Felix JO, Michael LO, Ale BA. Phytochemical screening and GC-FID identification of bioactive compounds in n-hexane, ethylacetate and methanol fractions of methanolic leaves extract of Azanza garckeana. Food Chem Adv. 2024; 4:100712. https://doi.org/10.1016/j.focha.2024.100712
  35. Chua LS, Lau CH, Chew CY, Dawood DAS. Solvent fractionation and acetone precipitation for crude saponins from Eurycoma longifolia extract. Mol. 2019;24(7):1416. https://doi.org/10.3390/molecules24071416
  36. Majinda RRT. Extraction and Isolation of Saponins. In: Sarker SD, Nahar L, editors. Natural Products Isolation. Totowa, NJ: Humana Press; 2012. p. 415–26. (Methods in Molecular Biology; vol. 864). https://doi.org/10.1007/978-1-61779-624-1_16
  37. Jiang Z, Kempinski C, Chappell J. Extraction and Analysis of Terpenes/Terpenoids. Curr Protoc Plant Biol. 2016;1(2):345–58. https://currentprotocols.onlinelibrary.wiley.com/doi/10.1002/cppb.20024
  38. Kaufmann B, Christen P, Veuthey JL. Study of factors influencing pressurized solvent extraction of polar steroids from plant material. Application to the recovery of withanolides. Chromatographia. 2001;54(5–6):394–8. https://doi.org/10.1007/BF02492690
  39. Schmidt G, Steinhart H. Impact of extraction solvents on steroid contents determined in beef. Food Chem. 2002;76(1):83–8. https://doi.org/10.1016/S0308-8146(01)00237-0
  40. Lee HJ, Shin KC, Lee GW, Oh DK. Production of aglycone protopanaxatriol from ginseng root extract using Dictyoglomus turgidum ?-glycosidase that specifically hydrolyzes the xylose at the C-6 position and the glucose in protopanaxatriol-type ginsenosides. Appl Microbiol Biotechnol. 2014;98(8):3659–67. https://doi.org/10.1007/s00253-013-5302-2
  41. Fuentes-Aguilar A, González-Bakker A, Jovanovi? M, Stojanov SJ, Puerta A, Gargano A, et al. Coumarins-lipophilic cations conjugates: Efficient mitocans targeting carbonic anhydrases. Bioorganic Chem. 2024;145:107168. https://doi.org/10.1016/j.bioorg.2024.107168
  42. Panda S, Jozwiak A, Sonawane PD, Szymanski J, Kazachkova Y, Vainer A, et al. Steroidal alkaloids defend metabolism, and plant growth is modulated by the joint action of gibberellin and jasmonate signalling. New Phytol. 2022;233(3):1220–37. https://doi.org/10.1111/nph.17845
  43. Isah T. Anticancer alkaloids from trees: Development into drugs. Pharmacogn Rev. 2016;10(20):90. http://doi/org/10.4103/0973-7847.194047
  44. Wu Y, Ren D, Gao C, Li J, Du B, et al. Recent advances for alkaloids as botanical pesticides for use in organic agriculture. Int J Pest Manag. 2023;69(3):288–98. https://doi.org/10.1080/09670874.2021.1917723
  45. Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, et al. Plant secondary metabolites: The weapons for biotic stress management. Metabolites. 2023;13(6):716. https://doi.org/10.3390/metabo13060716
  46. Å amec D, Karalija E, Å ola I, Vuj?i? Bok V, Salopek-Sondi B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants. 2021;10(1):118. https://doi.org/10.3390/plants10010118
  47. Obakan Yerlikaya P, Ar?san E, Mehdizadehtapeh L, Uysal Onganer P, Çoker Gürkan A. The use of plant steroids in viral disease treatments: Current status and future perspectives. Eur J Biol. 2023;82(1):86–94. http://doi.org/10.26650/EurJBiol.2023.1130357
  48. Faysal Md, Dehbia Z, Zehravi M, Sweilam SH, Haque MA, Kumar KP, et al. Flavonoids as potential therapeutics against neurodegenerative disorders: Unlocking the prospects. Neurochem Res . 2024;49(8):1926–44. https://doi.org/10.1007/s11064-024-04177-x
  49. Pan MH, Lai CS, Ho CT. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 2010;1(1):15. https://doi.org/10.1039/C0FO00103A
  50. Sharififar F, Dehghn-Nudeh G, Mirtajaldini M. Major flavonoids with antioxidant activity from Teucrium polium L. Food Chem. 2009;112(4):885¬–8. https://doi.org/10.1016/j.foodchem.2008.06.064
  51. Gerken JB, Anson CW, Preger Y, Symons PG, Genders JD, Qiu Y, et al. Comparison of quinone?based catholytes for aqueous redox flow batteries and demonstration of long?term stability with tetrasubstituted quinones. Adv Energy Mater. 2020;10(20):2000340. https://doi.org/10.1002/aenm.202000340
  52. Basson DC, Van Vuuren S, Risenga IM. The effect of elevated carbon dioxide on the medicinal properties of Portulacaria afra. South Afr J Sci. 2024;120(1/2). https://doi.org/10.17159/sajs.2024/15899
  53. Zhu M, Wang J, Xie J, Chen L, Wei X, Jiang X, et al. Design, synthesis and evaluation of chalcone analogues incorporate ?, ? -Unsaturated ketone functionality as anti-lung cancer agents via evoking ROS to induce pyroptosis. Eur J Med Chem. 2018;157:1395–405. https://doi.org/10.1016/j.ejmech.2018.08.072
  54. Samreen HS, Hussain A, Yar M, Alshammari MB, Ayub K, Adeel M, Tariq M, et al. Photophysical and biological aspects of ?, ? ?unsaturated ketones: Experimental and in silico approach. J Biochem Mol Toxicol. 2023;37(10):e23433. https://doi.org/10.1002/jbt.23433
  55. Al-rubaye TS, Risan MH, Al-rubaye D. Gas chromatography-mass- spectroscopy analysis of bioactive compounds from Streptomyces spp. isolated from Tigris river sediments in Baghdad city. J Biotechnol Res Cent. 2020;14(1):63–71. https://doi.org/10.24126/jobrc.2020.14.1.590
  56. Nasim SA, Dhir B, Samar F, Rashmi K, Mahmooduzzafar, Mujib A. Sulphur treatment alters the therapeutic potency of alliin obtained from garlic leaf extract. Food Chem Toxicol. 2009;47(4):888–92. https://doi.org/10.1016/j.fct.2009.01.024
  57. Miekus N, Marszalek K, Podlacha M, Iqbal A, Puchalski C, Swiergiel AH. Health benefits of plant-derived sulfur compounds, glucosinolates and organosulfur compounds. Mol. 2020 ;25(17):3804. https://doi.org/10.3390/molecules25173804
  58. Osunde OM, Atere CT, Adesanwo OO, Taiwo LB, Olayinka A. FTIR Characterization of Bioactive Functional Groups Present in Crude Extract of Mycoherbicides Produced from Consortium Culture of Rhizosphere Fungal Isolates. Commun Soil Sci Plant Anal. 2024;55(19):2858–67. https://doi.org/10.1080/00103624.2024.2378969

Downloads

Download data is not yet available.