Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Advancements in the realm of calcium nanoparticles: An in-depth exploration of synthesis, characterization and multifaceted applications in agriculture

DOI
https://doi.org/10.14719/pst.7518
Submitted
30 January 2025
Published
10-08-2025
Versions

Abstract

An extensive overview of nano calcium is given in this article, with particular attention paid to its synthesis methods, characterization techniques and agricultural applications. It highlights the unique properties of nano calcium and its potential as a promising nanomaterial in agriculture. The synthesis section discusses various methods to produce nano calcium, including sol-gel, precipitation, hydrothermal synthesis and green synthesis approaches and it highlights the nuances involved in tailoring nano calcium particles for agricultural purposes. The article also emphasizes the significance of characterization techniques in understanding the physicochemical attributes of nano calcium by using tools such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). It explores the agricultural applications of nano calcium, particularly its role in enhancing nutrient uptake, soil fertility and crop yield. The impact of nano calcium on plant growth, stress tolerance and disease resistance is discussed, offering a comprehensive perspective on its potential benefits for sustainable agriculture. The article also highlights how nano calcium can be an eco-friendly alternative by reducing dependence on traditional fertilizers and minimizing environmental harm. In conclusion, it combines existing research on nano calcium synthesis, emphasizing its potential to transform modern agriculture and support global food security.

References

  1. 1. Ghotekar S, Pagar T, Pansambal S, Oza R. A review on green synthesis of sulfur nanoparticles via plant extract, characterization and its applications. Adv J Chem-Sec B. 2020;2(3):128–43.
  2. 2. Ramola B, Joshi NC, Ramola M, Chhabra J, Singh A. Green synthesis, characterizations and antimicrobial activities of CaO nanoparticles. Orient J Chem. 2019;35(3):1154. https://doi.org/10.13005/ojc/350333
  3. 3. Rotello V. Nanoparticles: building blocks for nanotechnology: Springer Science & Business Media; 2004. https://doi.org/10.1007/978-1-4419-9042-6
  4. 4. Kaur S, Roy A. Bioremediation of heavy metals from wastewater using nanomaterials. Environ Dev Sustain. 2021;23:9617–40. https://doi.org/10.1007/s10668-020-01078-1
  5. 5. Savithramma N, Fareeda G, Madhavi V, Murthy S. Effect of Ca2+ on photochemical activities of green leafy vegetables. J Plant Biol. 2008;34(95):95–8. https://doi.org/10.21608/djs.2017.139467
  6. 6. Savithramma N, Yugandhar P, Prasad KS, Ankanna S, Chetty KM. Ethnomedicinal studies on plants used by the Yanadi tribe of Chandragiri reserve forest area, Chittoor District, Andhra Pradesh, India. J Intercult Ethnopharmacol. 2016;5(1):49. https://doi.org/10.5455/jice.20160122065531
  7. 7. Casero T, Benavides A, Recasens I, Rufat J, editors. Preharvest calcium sprays and fruit calcium absorption in 'Golden' apples. Acta Hortic. 594, 467–73. https://doi.org/10.17660/ActaHortic.2002.594.60
  8. 8. Desoky E-SM, Mansour E, El-Sobky E-SE, Abdul-Hamid MI, Taha TF, Elakkad HA, et al. Physio-biochemical and agronomic responses of faba beans to exogenously applied nano-silicon under drought stress conditions. Front Plant Sci. 2021;12:637783. https://doi.org/10.3390/agronomy13030875
  9. 9. Mansour E, Merwad A, Yasin M, Abdul-Hamid M, El-Sobky E, Oraby H. Nitrogen use efficiency in spring wheat: Genotypic variation and grain yield response under sandy soil conditions. J Agri Sci. 2017;155(9):1407–23. https://doi.org/10.1017/S0021859617000600
  10. 10. Xiumei L, Fudao Z, Shuqing Z, Xusheng H, Rufang W, Zhaobin F, et al. Responses of peanut to nano-calcium carbonate. Plant Nutr Fert Sci. 2005;11(3):385–9.
  11. 11. Ranjbar S, Rahemi M, Ramezanian A. Comparison of nano-calcium and calcium chloride spray on post-harvest quality and cell wall enzymes activity in apple cv. Red Delicious. Sci Horti. 2018;240:57–64. https://doi.org/10.1016/j.scienta.2018.05.035
  12. 12. Cid-López ML, Soriano-Melgar LdAA, García-González A, Cortez-Mazatan G, Mendoza-Mendoza E, Rivera-Cabrera F, et al. The benefits of adding calcium oxide nanoparticles to biocompatible polymeric coatings during cucumber fruit post-harvest storage. Sci Horti 2021;287:110285. https://doi.org/10.1016/j.scienta.2021.110285
  13. 13. Kulkarni D, Wachs IE. Isopropanol oxidation by pure metal oxide catalysts: number of active surface sites and turnover frequencies. Appl Catal A: Gen. 2002;237(1-2):121–37. https://doi.org/10.1016/S0926-860X(02)00325-3
  14. 14. Khine EE, Koncz-Horvath D, Kristaly F, Ferenczi T, Karacs G, Baumli P, et al. Synthesis and characterization of calcium oxide nanoparticles for CO2 capture. J Nanopart Res. 2022;24(7):139. https://doi.org/10.1007/s11051-022-05518-z
  15. 15. Sulaiman N, Ghazali M, Yunas J, Rajabi A, Majlis B, Razali M. Synthesis and characterization of CaFe2O4 nanoparticles via co-precipitation and auto-combustion methods. Ceram Int. 2018;44(1):46–50. https://doi.org/10.1016/j.ceramint.2017.08.203
  16. 16. Perez AP, Casasco A, Schilrreff P, Defain Tesoriero MV, Duempelmann L, Altube MJ, Higa L, Morilla MJ, Petray P, Romero EL. Enhanced photodynamic leishmanicidal activity of hydrophobic zinc phthalocyanine within archaeolipids containing liposomes. Int J Nanomed. 2014:3335–45. https://doi.org/10.2147/IJN.S60543
  17. 17. Habte L, Shiferaw N, Mulatu D, Thenepalli T, Chilakala R, Ahn JW. Synthesis of nano-calcium oxide from waste eggshell by the sol-gel method. Sustain. 2019;11(11):3196. https://doi.org/10.3390/su11113196
  18. 18. Zhao P, Tian Y, You J, Hu X, Liu Y. Recent advances of calcium carbonate nanoparticles for biomedical applications. Bioeng. 2022;9(11):691. https://doi.org/10.3390/bioengineering9110691
  19. 19. Ueno Y, Futagawa H, Takagi Y, Ueno A, Mizushima Y. Drug-incorporating calcium carbonate nanoparticles for a new delivery system. J Controlled Release. 2005;103(1):93–8. https://doi.org/10.1016/j.jconrel.2004.11.015
  20. 20. Wu G, Ding J, Xue J. Synthesis of calcium carbonate capsules in water-in-oil-in-water double emulsions. Journal of Materials Research. 2008;23(1):140–9. https://doi.org/10.1557/JMR.2008.0017
  21. 21. Zhao Y, Luo Z, Li M, Qu Q, Ma X, Yu SH, et al. A preloaded amorphous calcium carbonate/doxorubicin@ silica nanoreactor for ph-responsive delivery of an anticancer drug. Angew Chem Int Ed. 2015;54(3):919–22. https://doi.org/10.1002/anie.201408510
  22. 22. Boyjoo Y, Pareek VK, Liu J. Synthesis of micro and nanosized calcium carbonate particles and their applications. J Mat Chem A. 2014;2(35):14270–88. https://doi.org/10.1039/C4TA02070G
  23. 23. Mirghiasi Z, Bakhtiari F, Darezereshki E, Esmaeilzadeh E. Preparation and characterization of CaO nanoparticles from Ca (OH) 2 by direct thermal decomposition method. J Ind Eng Chem. 2014;20(1):113–7. https://doi.org/10.1016/j.jiec.2013.04.018
  24. 24. Alobaidi YM, Ali MM, Mohammed AM. Synthesis of calcium oxide nanoparticles from waste eggshell by thermal decomposition and their applications. Jordan J Biol Sci. 2022;15(2). https://doi.org/10.3390/su11113196
  25. 25. Garg R, Kumari M, Kumar M, Dhiman S, Garg R. Green synthesis of calcium carbonate nanoparticles using waste fruit peel extract. Mater Today Proc. 2021;46:6665–8. https://doi.org/10.1016/j.matpr.2021.04.124
  26. 26. Ashwini M, Sridhar C, Mamathashree C, Shruthi T. Influence of enriched FYM and fertilizer levels on yield and economics of aerobic rice (Oryza sativa L.). J Pure Appl Microbiol. 2016;10(1).
  27. 27. Yoonus J, Resmi R, Beena B. Greener nanoscience: Piper betel leaf extract-mediated synthesis of CaO nanoparticles and evaluation of its antibacterial and anticancer activity. Mater Today Proc. 2021;41:535–40. https://doi.org/10.1016/j.matpr.2020.05.246
  28. 28. Jadhav V, Bhagare A, Wahab S, Lokhande D, Vaidya C, Dhayagude A, et al. Green synthesized calcium oxide nanoparticles (CaO NPs) using leaves aqueous extract of Moringa oleifera leaves and evaluation of their antibacterial activities. J Nanomat. 2022;2022(1):9047507. https://doi.org/10.1155/2022/9047507
  29. 29. Beigoli S, Hekmat A, Farzanegan F, Darroudi M. Green synthesis of amorphous calcium phosphate nanopowders using Aloe Vera plant extract and assessment of their cytotoxicity and antimicrobial activities. J Sol-Gel Sci Technol. 2021;98:508–16. https://doi.org/10.1007/s10971-021-05515-z
  30. 30. Gandhi N, Shruthi Y, Sirisha G, Anusha C. Facile and eco-friendly method for synthesis of calcium oxide (CaO) nanoparticles and its potential application in agriculture. Saudi J Life Sci. 2021;6:89–103.
  31. 31. Mazher M, Ishtiaq M, Hamid B, Haq SM, Mazhar A, Bashir F, Mazhar M, et al. Biosynthesis and characterization of calcium oxide nanoparticles from Citrullus colocynthis fruit extracts; their biocompatibility and bioactivities. Materials. 2023;16(7):2768. https://doi.org/10.3390/ma16072768
  32. 32. Ramli M, Rossani RB, Nadia Y, Darmawan TB, Febriani, Saiful, et al., editors. Nanoparticle fabrication of calcium oxide (CaO) mediated by the extract of red dragon fruit peels (Hylocereus Polyrhizus) and its application as inorganic anti-microorganism materials. In: IOP Conf Ser Mater Sci Eng. 2019;509(1):012090. https://doi.org/10.1088/1757-899X/509/1/012090
  33. 33. Lopera A, Montoya A, Vélez I, Robledo S, Garcia C. Synthesis of calcium phosphate nanostructures by combustion in solution as a potential encapsulant system of drugs with photodynamic properties for the treatment of cutaneous leishmaniasis. Photodiagnosis Photodyn Ther. 2018;21:138–46. https://doi.org/10.1016/j.pdpdt.2017.11.017
  34. 34. Meva FEa, Ntoumba AA, Kedi PBE, Tchoumbi E, Schmitz A, Schmolke L, et al. Silver and palladium nanoparticles produced using a plant extract as reducing agent, stabilized with an ionic liquid: sizing by X-ray powder diffraction and dynamic light scattering. J Mat Res Technol. 2019;8(2):1991–2000. https://doi.org/10.1016/j.jmrt.2018.12.017
  35. 35. Huang T, Xu X-HN. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J Mat Chem. 2010;20(44):9867–76. https://doi.org/10.1039/C0JM01990A
  36. 36. Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G, Cichomski M, et al. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticle colloids. J Nanomat. 2013;2013(1):313081. https://doi.org/10.1155/2013/313081
  37. 37. Mourdikoudis S, Pallares RM, Thanh NT. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871–934. https://doi.org/10.1039/c8nr02278j
  38. 38. Helmlinger J, Sengstock C, Groß-Heitfeld C, Mayer C, Schildhauer T, Köller M, et al. Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Adv. 2016;6(22):18490–501. https://doi.org/10.1039/c5ra27836h
  39. 39. Langford JI, Wilson A. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr. 1978;11(2):102–13. https://doi.org/10.1107/S0021889878012844
  40. 40. Maringgal B, Hashim N, Tawakkal ISMA, Hamzah MH, Mohamed MTM. Biosynthesis of CaO nanoparticles using Trigona sp. Honey: Physicochemical characterization, antifungal activity and cytotoxicity properties. J Mat Res Technol. 2020;9(5):11756–68. https://doi.org/10.1016/j.jmrt.2020.08.054
  41. 41. Mostafa FA, Gad AN, Gaber A-AM, Abdel-Wahab A-MA. Preparation, characterization and application of calcium oxide nanoparticles from waste carbonation mud in clarification of raw sugar melt. Sugar Tech. 2023;25(2):331–8. https://doi.org/10.1007/s12355-022-01150-2
  42. 42. Holzwarth U, Gibson N. The Scherrer equation versus the 'Debye-Scherrer equation'. Nat Nanotechnol. 2011;6(9):534. https://doi.org/10.1038/nnano.2011.145
  43. 43. Kurian M, Nair DS. Effect of preparation conditions on nickel zinc ferrite nanoparticles: a comparison between sol–gel auto combustion and co-precipitation methods. J Saudi Chem Soc. 2016;20:S517–S22. https://doi.org/10.1016/j.jscs.2013.03.003
  44. 44. Khanna L, Verma N. Size-dependent magnetic properties of calcium ferrite nanoparticles. J Magn Magn Mat. 2013;336:1–7. https://doi.org/10.1016/j.jmmm.2013.02.016
  45. 45. Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. https://doi.org/10.3390/ijms17091534
  46. 46. Fissan H, Ristig S, Kaminski H, Asbach C, Epple M. Comparison of different characterization methods for nanoparticle dispersions before and after aerosolisation. Anal Meth. 2014;6(18):7324–34. https://doi.org/10.1039/C4AY01203H
  47. 47. Gupta A, Koirala AR, Gupta B, Parajuli N. Improved method for separation of silver nanoparticles synthesized using the Nyctanthes arbour-tristis shrub. Acta Chem Malaysia. 2019;3(1):35–42. https://doi.org/10.2478/acmy-2019-0005
  48. 48. Theivasanthi T, Alagar M. Nano-sized copper particles by electrolytic synthesis and characterizations. Int J Phys Sci. 2011;6(15):3662–71. https://doi.org/10.5897/IJPS10.116
  49. 49. Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE. Characterization of nanoparticles for therapeutics. Nanomed. 2007;2(6):789–803. https://doi.org/10.2217/17435889.2.6.789
  50. 50. Selvaraj S, Thangam R, Fathima NN. Electrospinning of casein nanofibers with silver nanoparticles for potential biomedical applications. Int J Biol Macromol. 2018;120:1674–81. https://doi.org/10.1016/j.ijbiomac.2018.09.177
  51. 51. El-Temsah ME, Abd-Elkrem YM, El-Gabry YA, Abdelkader MA, Morsi NA, Taha NM, et al. Response of diverse peanut cultivars to nano and conventional calcium forms under alkaline sandy soil. Plants. 2023;12(14):2598. https://doi.org/10.3390/plants12142598
  52. 52. Deepa M, Sudhakar P, Nagamadhuri KV, Balakrishna Reddy K, Giridhara Krishna T, Prasad TNVKV. First evidence on phloem transport of nanoscale calcium oxide in groundnut using the solution culture technique. Appl Nanosci. 2015;5:545–51. https://doi.org/10.1007/s13204-014-0348-8.
  53. 53. Hamza M, Abbas M, Abd Elrahman A, Helal M, Shahba M. Conventional versus nano calcium forms on peanut production under sandy soil conditions. Agri. 2021;11(8):767. https://doi.org/10.3390/agriculture11080767.
  54. 54. Mazhar MW, Ishtiaq M, Maqbool M, Ajaib M, Hussain I, Hussain T, et al. Synergistic application of calcium oxide nanoparticles and farmyard manure induces cadmium tolerance in mung bean (Vigna radiata L.) by influencing physiological and biochemical parameters. Plos One. 2023;18(3):e0282531. https://doi.org/10.1371/journal.pone.0282531
  55. 55. Kumara K, Hafeel R, Wathugala D, Kumarasinghe H. Effect of nano-calcite foliar fertilizer on growth and yield of Oryza sativa variety at 362. Trop Agri Res Ext.2017;20(1–2). http://dx.doi.org/10.4038/jas.v14i3.8599
  56. 56. Gao Y, Chen S, Li Y, Shi Y. Effect of nano-calcium carbonate on morphology, antioxidant enzyme activity and photosynthetic parameters of wheat (Triticum aestivum L.) seedlings. Chem Biol Technol Agri. 2023;10(1):31. https://doi.org/10.1186/s40538-023-00404-9
  57. 57. Rabeh HAM, Elsokkary I. Influence of integrated nano-calcium and K-humate foliar spray on growth, yield and fibre quality of cotton grown in alluvial non-saline soil. Alex Sci Exch J. 2022;43(4):609–23. https://doi.org/10.21608/asejaiqjsae.2022.273618
  58. 58. Kanjana D. Evaluation of foliar application of different types of nanofertilizers on growth, yield and quality parameters and nutrient concentration of cotton under irrigated conditions. Int J Curr Microbiol App Sci. 2020;9(7):429–41. https://doi.org/10.20546/ijcmas.2020.907.048
  59. 59. Sawan ZM. Mineral fertilizers and plant growth retardants: Its effects on cottonseed yield, its quality and contents. Cogent Biol. 2018;4(1):1459010. https://doi.org/10.1080/23312025.2018.1459010
  60. 60. Rane M, Bawskar M, Rathod D, Nagaonkar D, Rai M. Influence of calcium phosphate nanoparticles, Piriformospora indica and Glomus mosseae on the growth of Zea mays. Adv Nat Sci Nanosci Nanotechnol. 2015;6(4):045014. https://doi.org/10.1088/2043-6262/6/4/045014
  61. 61. Tombuloglu H, Tombuloglu G, Slimani Y, Ercan I, Sozeri H, Baykal A. Impact of manganese ferrite (MnFe2O4) nanoparticles on growth and magnetic character of barley (Hordeum vulgare L.). Environ Poll 2018;243:872–81. https://doi.org/10.1016/j.envpol.2018.08.096
  62. 62. Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Baykal A, Ercan I, et al. Tracking of NiFe2O4 nanoparticles in barley (Hordeum vulgare L.) and their impact on plant growth, biomass, pigmentation, catalase activity and mineral uptake. Environ Nanotechnol, Monit Manag. 2019;11:100223. https://doi.org/10.1016/j.envpol.2018.08.096
  63. 63. Rapisarda M, Mistretta MC, Scopelliti M, Leanza M, La Mantia FP, Rizzarelli P. Influence of calcium carbonate nanoparticles on the soil burial degradation of Polybutyleneadipate-co-butylenetherephthalate films. Nanomaterials. 2022;12(13):2275. https://doi.org/10.3390/nano12132275
  64. 64. Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav. 2006;1(4):196–200. https://doi.org/10.4161/psb.1.4.3142
  65. 65. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agri Food Chem. 2011;59(8):3485–98. https://doi.org/10.1021/jf104517j
  66. 66. Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M. Plant organellar calcium signalling: an emerging field. J Exp Bot. 2012;63(4):1525–42. https://doi.org/10.1093/jxb/err394
  67. 67. Spalding EP, Harper JF. The ins and outs of cellular Ca2+ transport. Cur Opin Plant Biol. 2011;14(6):715-20. https://doi.org/10.1016/j.pbi.2011.08.001
  68. 68. Yang H, Jie Y. Uptake and transport of calcium in plants. J Plant Physiol Mol Biol. 2005;31(3):227.
  69. 69. Zhai G, Walters KS, Peate DW, Alvarez PJ, Schnoor JL. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett. 2014;1(2):146-=–51. https://doi.org/10.1021/ez400202b
  70. 70. Wong MH, Misra RP, Giraldo JP, Kwak S-Y, Son Y, Landry MP, et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett. 2016;16(2):1161–72. https://doi.org/10.1021/acs.nanolett.5b04467
  71. 71. Li L, Luo Y, Li R, Zhou Q, Peijnenburg WJ, Yin N, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat Sustain. 2020;3(11):929–37. https://doi.org/10.1038/s41893-020-0567-9
  72. 72. Wang Q, Yang S, Wan S, Li X. The significance of calcium in photosynthesis. Int J Mol Sci. 2019;20(6):1353. https://doi.org/10.3390/ijms20061353
  73. 73. Ghorbanpour M, Movahedi A, Hatami M, Kariman K, Bovand F, Shahid M. Insights into nanoparticle-induced changes in plant photosynthesis. Photosynthetica. 2021;59(4):570–86. https://doi.org/10.3390/ijms20061353
  74. 74. Azeez L, Lateef A, Adetoro RO, Adeleke AE. Responses of Moringa oleifera to alteration in soil properties induced by calcium nanoparticles (CaNPs) on mineral absorption, physiological indices and photosynthetic indicators. Beni-Suef Univ J Basic Appl Sci. 2021;10:1–15. https://doi.org/10.1186/s43088-021-00128-5
  75. 75. Azeez L, Adejumo AL, Simiat OM, Lateef A. Influence of calcium nanoparticles (CaNPs) on nutritional qualities, radical scavenging attributes of Moringa oleifera and risk assessments on human health. J Food Meas Charact. 2020;14:2185–95. https://doi.org/10.1007/s11694-020-00465-6
  76. 76. Farooq A, Javad S, Jabeen K, Shah AA, Ahmad A, Shah AN, et al. Effect of calcium oxide, zinc oxide nanoparticles and their combined treatments on growth and yield attributes of Solanum lycopersicum L. J King Saud Univ Sci. 2023;35(5):102647. https://doi.org/10.1016/j.jksus.2023.10264
  77. 77. Ibraheem FF, Hussein AM. Impact of varieties and spraying with nano calcium fertilizer on the anatomical traits of potato tubers. Ann Rom Soc Cell Biol. 2023;27(01):234–8.Available from: https://annalsofrscb.ro/index.php/journal/article/view/11634
  78. 78. Mohammadbagheri L, Naderi D. Effect of growth medium and calcium nano-fertilizer on quality and some characteristics of gerbera cut flower. J Ornam Plants. 2017;7(3):205–13.
  79. 79. Carrasco-Correa EJ, Mompó-Roselló Ò, Simó-Alfonso EF. Calcium oxide nanofertilizer as an alternative to common calcium products for the improvement of the amount of peel of fruit calcium. Environ Technol Innov. 2023;31:103180. https://doi.org/10.1016/j.eti.2023.103180
  80. 80. El-Salhy AFM, Masoud AA, Gouda FE-Z, Saeid WT, El-Magid A, Emad A. Effect of foliar spraying of calcium and boron nano-fertilizers on growth and fruiting of certain pomegranate cultivars. Assiut J Agric Sci. 2022;53(5):123–38. https://doi.org/10.21608/ajas.2022.154162.1162
  81. 81. El-Motaium R, Shaban A, Badawy ES, Ibrahim A. Estimation of nitrogen use efficiency by mango seedlings under nano and conventional calcium fertilization using the enriched stable isotope (N-15). J Exp Biol Agric Sci. 2022;10(2):379–86. https://doi.org/10.18006/2022.10(2).379.386
  82. 82. Ramirez-Gil JG, Lopera AA, Garcia C. Calcium phosphate nanoparticles improve growth parameters and mitigate stress associated with climatic variability in avocado fruit. Heliyon. 2023;9(8). https://doi.org/10.1016/j.heliyon.2023.e18658
  83. 83. Ali S, Mehmood A, Khan N. Uptake, translocation and consequences of nanomaterials on plant growth and stress adaptation. J Nanomater. 2021;2021:1–17. https://doi.org/10.1155/2021/6677616
  84. 84. Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V. Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol. 2017;15(1):1–19. https://doi.org/10.1186/s12951-017-0268-3
  85. 85. Ghafir SA. Physiological and anatomical comparison between four different apple cultivars under cold-storage conditions. Acta Biol Szegeds. 2009;53(1):21–26.
  86. 86. Shafiee M, Taghavi T, Babalar M. Addition of salicylic acid to nutrient solution combined with post-harvest treatments (hot water, salicylic acid and calcium dipping) improved post-harvest fruit quality of strawberry. Sci Hortic. 2010;124(1):40–45. https://doi.org/10.1016/j.scienta.2009.12.004
  87. 87. Saure MC. Calcium translocation to fleshy fruit: its mechanism and endogenous control. Sci Hortic. 2005;105(1):65–89. https://doi.org/10.1016/j.scienta.2004.10.003
  88. 88. Upadhyaya H, Begum L, Dey B, Nath P, Panda S. Impact of calcium phosphate nanoparticles on rice plant. J Plant Sci Phytopathol. 2017;1(1):001–10. https://doi.org/10.29328/journal.jpsp.1001001
  89. 89. Khan KA, Shoaib A, Arshad Awan Z, Basit A, Hussain M. Macrophomina phaseolina alters the biochemical pathway in Vigna radiata chastened by Zn2+ and FYM to improve plant growth. J Plant Interact. 2018;13(1):131–40. https://doi.org/10.1080/17429145.2018.1441451
  90. 90. Huang D, Gong X, Liu Y, Zeng G, Lai C, Bashir H, et al. Effects of calcium at toxic concentrations of cadmium in plants. Planta. 2017;245:863–73. https://doi.org/10.1007/s00425-017-2664-1
  91. 91. Hua KH, Wang HC, Chung RS, Hsu JC. Calcium carbonate nanoparticles can enhance plant nutrition and insect pest tolerance. J Pestic Sci. 2015;40(4):208–13. https://doi.org/10.1584/jpestics.D15-025
  92. 92. Reyhani MF, Ghasemi N, Milani AS, Asl MA. Antimicrobial effect of nano-calcium hydroxide on the four- and six-week-old intra-canal Enterococcus faecalis biofilm. J Dent. 2023;24(2):194. https://doi.org/10.30476/dentjods.2022.90215.1476
  93. 93. Tang ZX, Yu Z, Zhang ZL, Zhang XY, Pan QQ, Shi LE. Sonication-assisted preparation of CaO nanoparticles for antibacterial agents. Química Nova. 2013;36:933–36. https://doi.org/10.1590/S0100-40422013000700002

Downloads

Download data is not yet available.