Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Unveiling horticultural excellence of Lotus (Nelumbo nucifera): A review

DOI
https://doi.org/10.14719/pst.7545
Submitted
31 January 2025
Published
14-04-2025
Versions

Abstract

The Nelumbonaceae family pertains to some aquatic, perennial herbaceous plants. There is only one genus and two species, of which the lotus (N. nucifera) is one. From an economic viewpoint, especially in Southeast Asia, where its production has expanded tremendously, the lotus has immense horticultural, medicinal and ecological advantages. Recent investigative interest in N. nucifera has proliferated, giving rise to multiple studies dealing with its biological properties, genetic constitution and economic applications. This review correlates the findings from 87 studies published between 2010 and 2024, encoding the growing resurrection of lotus research. Over the last decade, the cultivation of lotuses has grown by 35 % through Southeast Asia, with the entire economic impact being over US$ 1.2 billion each year through ornamental, food and pharmaceutical uses. Progress in genomic studies led to the discovery of 36 drought-resistance genes and three pathways responsible for the conspicuous water-repellent features of the plant. Also, the evolutionary analysis has revealed 16 unique gene families unavailable in other aquatic plants, providing new avenues for the insight and study of its genetic diversities and adaptations. Despite these advancements, several challenges persist in lotus research. A key limitation lies in improving transformation efficiency and developing reliable regeneration systems, which are crucial for genetic modifications and biotechnological applications. Addressing these gaps will not only enhance the potential of N. nucifera as a model aquatic plant but also support its broader utilization in scientific and commercial fields. Future research should focus on optimizing genetic transformation techniques and expanding molecular studies to unlock the full potential of this valuable species. These advancements would significantly enhance the utility of lotus as a pivotal model in horticultural research.

References

  1. Arunyanart S, Chaitrayagun M. Induction of somatic embryogenesis in lotus (Nelumbo nucifera Geartn.). Scientia Horticulturae. 2005;105(3):411-20. https://doi.org/10.1016/j.scienta.2005.01.034
  2. Chen C, Li G, Hemar Y, Corke H, Zhu F. Physicochemical properties and molecular structure of lotus seed starch. Carbohydrate Polymers. 2023;305:120515. https://doi.org/10.1016/j.carbpol.2022.120515
  3. Bhushan B, Jung YC, Koch K. Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir. 2009;25(5):3240-48. https://doi.org/10.1021/la803860d
  4. Chen C, Li G, Zhu F. A novel starch from lotus (Nelumbo nucifera) seeds: Composition, structure, properties and modifications. Food Hydrocolloids. 2021;120:106899. https://doi.org/10.1016/j.foodhyd.2021.106899
  5. Choi HY, Jung KH, Shin HS. Antioxidant activity of the various extracts from different parts of lotus (Nelumbo nucifera Gaertner). Food Science and Biotechnology. 2009;18(4):1051-4.
  6. Chu P, Chen H, Zhou Y, Li Y, Ding Y, Jiang L, et al. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor. Planta. 2012;235:1271-88. https://doi.org/10.1007/s00425-011-1573-y
  7. Cronquist A. An integrated system of classification of flowering plants. Columbia University Press. 1981.
  8. Chen S, Fang L, Xi H, Guan L, Fang J, Liu Y, et al. Simultaneous qualitative assessment and quantitative analysis of flavonoids in various tissues of lotus (Nelumbo nucifera) using high performance liquid chromatography coupled with triple quad mass spectrometry. Analytica Chimica Acta. 2012;724:127-35. https://doi.org/10.1016/j.aca.2012.02.051
  9. Chen HH, Chu P, Zhou YL, Ding Y, Li Y, Liu J, et al. Ectopic expression of NnPER1, a Nelumbo nucifera 1-cysteine peroxiredoxin antioxidant, enhances seed longevity and stress tolerance in Arabidopsis. The Plant Journal. 2016;88(4):608-19. https://doi.org/10.1111/tpj.13286
  10. Dahlgren G. An updated angiosperm classification. Botanical Journal of the Linnean Society. 1989;100(3):197-203. https://doi.org/10.1111/j.1095-8339.1989.tb01717.x
  11. Darmanin T, Guittard F. Superhydrophobic and superoleophobic properties in nature. Materials Today. 2015;18(5):273-85. https://doi.org/10.1016/j.mattod.2015.01.001
  12. Deng J, Chen S, Yin X, Wang K, Liu Y, Li S, et al. Systematic qualitative and quantitative assessment of anthocyanins, flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars. Food Chemistry. 2013;139(1-4):307-12. https://doi.org/10.1016/j.foodchem.2013.02.010
  13. Deng J, Fu Z, Chen S, Damaris RN, Wang K, Li T, et al. Proteomic and epigenetic analyses of lotus (Nelumbo nucifera) petals between red and white cultivars. Plant and Cell Physiology. 2015;56(8):1546-55. https://doi.org/10.1093/pcp/pcv077
  14. Diao Y, Chen L, Yang G, Zhou M, Song Y, Hu Z, et al. Nuclear DNA C-values in 12 species in Nymphaeales. Caryologia. 2006;59(1):25-30. https://doi.org/10.1080/00087114.2006.10797894
  15. Dieringer G, Leticia Cabrera R, Mottaleb M. Ecological relationship between floral thermogenesis and pollination in Nelumbo lutea (Nelumbonaceae). American Journal of Botany. 2014;101(2):357-64. https://doi.org/10.3732/ajb.1300370
  16. Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein Journal of Nanotechnology. 2011;2(1):152-61. https://doi.org/10.3762/bjnano.2.19
  17. Gandolfo MA, Cuneo RN. Fossil Nelumbonaceae from the La Colonia formation (Campanian–Maastrichtian, Upper Cretaceous), Chubut, Patagonia, Argentina. Review of Palaeobotany and Palynology. 2005;133(3-4):169-78. https://doi.org/10.1016/j.revpalbo.2004.09.007
  18. Grant NM, Miller RA, Watling JR, Robinson SA. Distribution of thermogenic activity in floral tissues of Nelumbo nucifera. Functional Plant Biology. 2010;37(11):1085-95. https://doi.org/10.1071/FP10024
  19. Grant NM, Miller RA, Watling JR, Robinson SA. Synchronicity of thermogenic activity, alternative pathway respiratory flux, AOX protein content and carbohydrates in receptacle tissues of sacred lotus during floral development. Journal of Experimental Botany. 2008;59(3):705-14. https://doi.org/10.1093/jxb/erm333
  20. Gui S, Peng J, Wang X, Wu Z, Cao R, Salse J, et al. Improving Nelumbo nucifera genome assemblies using high-resolution genetic maps and BioNano genome mapping reveals ancient chromosome rearrangements. The Plant Journal. 2018;94(4):721-34. https://doi.org/10.1111/tpj.13894
  21. Gulzar B, Mujib A, Rajam MV, Zafar N, Mamgain J, Malik M, et al. Shotgun label-free proteomic and biochemical study of somatic embryos (cotyledonary and maturation stage) in Catharanthus roseus (L.) G. Don. 3 Biotech. 2021;11:1-5. https://doi.org/10.1007/s13205-021-02649-3
  22. Kramina TE, Hadziev TR. and Samigullin TH. The Lotus angustissimus group (Fabaceae): Can phylogenetic patterns be accommodated by a taxonomic concept?. Plants. 2024;13:101. https://doi.org/10.3390/plants13010101
  23. Kumar GA, Sundar STB, Jasmine AJ, Vasanth S. Multivariate genetic analysis and diversity assessment in lotus (Nelumbo nucifera) accessions. Indian Journal of Agricultural Sciences. 2024;94(10):1081–86. https://doi.org/10.56093/ijas.v94i10.146878
  24. La-Ongsri W, Trisonthi C, Balslev H. Management and use of Nelumbo nucifera Gaertn. in Thai wetlands. Wetlands Ecology and Management. 2009;17:279-89. https://doi.org/10.1007/s11273-008-9106-6
  25. Li JK, Huang SQ. Flower thermoregulation facilitates fertilization in Asian sacred lotus. Annals of Botany. 2009;103(7):1159-63. https://doi.org/10.1093/aob/mcp051
  26. Hu J, Gui S, Zhu Z, Wang X, Ke W, Ding Y. Genome-wide identification of SSR and SNP markers based on whole-genome re-sequencing of a Thailand wild sacred lotus (Nelumbo nucifera). PLoS One. 2015;10(11):e0143765. https://doi.org/10.1371/journal.pone.0143765
  27. Hu J, Pan L, Liu H, Wang S, Wu Z, Ke W, et al. Comparative analysis of genetic diversity in sacred lotus (Nelumbo nucifera Gaertn.) using AFLP and SSR markers. Molecular Biology Reports. 2012;39:3637-47. https://doi.org/10.1007/s11033-011-1138-y
  28. Huang L, Yang M, Li L, Li H, Yang D, Shi T, et al. Whole genome re-sequencing reveals evolutionary patterns of sacred lotus (Nelumbo nucifera). Journal of Integrative Plant Biology. 2018;60(1):2-15. https://doi.org/10.1111/jipb.12606
  29. Kim MJ, Nelson W, Soderlund CA, Gang DR. Next-generation sequencing-based transcriptional profiling of sacred lotus “China antique”. Tropical Plant Biology. 2013;6:161-79. https://doi.org/10.1007/s12042-013-9130-4
  30. Wang YF, Shen ZC, Li J, Liang T, Lin XF, Li YP, et al. Phytochemicals, biological activity and industrial application of lotus seedpod (Receptaculum nelumbinis): A review. Frontiers in Nutrition. 2022;9:1022794.
  31. Liu F, Xi L and Fu N. Genome-wide development of simple sequence repeat (SSR) markers at 2-Mb intervals in lotus (Nelumbo Adans.). BMC Genomics. 2024;25:11191.
  32. Li Y, Smith T, Svetlana P, Yang J, Jin JH, Li CS. Paleobiogeography of the lotus plant (Nelumbonaceae: Nelumbo) and its bearing on the paleoclimatic changes. Palaeogeography, Palaeoclimatology, Palaeoecology. 2014;399:28493. https://doi.org/10.1016/j.palaeo.2014.01.022
  33. Kumar RR, Deepshikha PB, Banerjee T, Chaturvedi V. Recent trends in the application of nanoparticles and nanocarriers. Polyhydroxyalkanoates: Sustainable Production and Biotechnological Applications III: Biomedical Sector.159.
  34. Lin Z, Zhang C, Cao D, Damaris RN, Yang P. The latest studies on lotus (Nelumbo nucifera): An emerging horticultural model plant. International Journal of Molecular Sciences. 2019;20(15):3680. https://doi.org/10.3390/ijms20153680
  35. Limwachiranon J, Huang H, Shi Z, Li L, Luo Z. Lotus flavonoids and phenolic acids: Health promotion and safe consumption dosages. Comprehensive Reviews in Food Science and Food Safety. 2018;17(2):458-71. https://doi.org/10.1111/1541-4337.12333
  36. Lin Z, Liu M, Damaris RN, Nyong’a TM, Cao D, Ou K, et al. Genome-wide DNA methylation profiling in the lotus (Nelumbo nucifera) flower showing its contribution to the stamen petaloid. Plants. 2019;8(5):135. https://doi.org/10.3390/plants8050135
  37. Liu Y, Ma SS, Ibrahim SA, Li EH, Yang H, Huang W. Identification and antioxidant properties of polyphenols in lotus seed epicarp at different ripening stages. Food Chemistry. 2015;185:159-64. https://doi.org/10.1016/j.foodchem.2015.03.117
  38. Menéndez-Perdomo IM, Facchini PJ. Benzylisoquinoline alkaloids biosynthesis in sacred lotus. Molecules. 2018;23(11):2899. https://doi.org/10.3390/molecules23112899
  39. Miller RE, Watling JR, Robinson SA. Functional transition in the floral receptacle of the sacred lotus (Nelumbo nucifera) from thermogenesis to photosynthesis. Functional Plant Biology. 2009;36(5):471-80. https://doi.org/10.1071/FP08326
  40. Ming R, VanBuren R, Liu Y, Yang M, Han Y, Li LT, et al. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biology. 2013;14:1-1. https://doi.org/10.1186/gb-2013-14-5-r41
  41. Sun H, Xin J, Song H, Chen L, Yang D, Yang H, et al. Harnessing genomic and molecular biology resources for genetic improvement of lotus: current achievements and future directions. Horticulture Advances. 2025;3(1):1. https://doi.org/10.1007/s44281-024-00055-2
  42. Mekbib Y, Huang SX, Ngarega BK, Li ZZ, Shi T, Ou KF, et al. The level of genetic diversity and differentiation of tropical lotus, Nelumbo nuciferaGaertn (Nelumbonaceae) from Australia, India and Thailand. Botanical Studies. 2020;61:1-1. https://doi.org/10.1186/s40529-020-00293-3
  43. Nakonechnaya OV, Yatsunskaya MS. Genetic and genotypic variation of Nelumbo komaroviiGrossh. Russian Journal of Genetics. 2018;54:816-24. https://doi.org/10.1134/S1022795418070116
  44. Pan Y, Han G, Mao Z, Zhang Y, Duan H, Huang J, et al. Structural characteristics and physical properties of lotus fibers obtained from Nelumbo nucifera petioles. Carbohydrate Polymers. 2011;85(1):188-95. https://doi.org/10.1016/j.carbpol.2011.02.013
  45. Pandey R, Sinha MK, Dubey A. Cellulosic fibers from Lotus (Nelumbo nucifera) peduncle. Journal of Natural Fibers. 2020;17(2):298-309. https://doi.org/10.1080/15440478.2018.1492486
  46. Pikulthong V, Hongjan N, Ariya S, Dechkla M, Boonman N, Wanna C, et al. In vitro acute gamma radiation on tissue of pink and white lotus (Nelumbo nucifera Gaertn.) in Thailand. Plant Science Today. 2024;11(3):306-13.
  47. Sahu R, Chandravanshi SS. Lotus cultivation under wetland: A case study of farmers innovation in Chhattisgarh, India, International Journal of Current Microbiology and Applied Sciences. 2018;Special Issue-7:4635-40.
  48. Seymour RS, Schultze-Motel P, Lamprecht I. Heat production by sacred lotus flowers depends on ambient temperature, not light cycle. Journal of Experimental Botany. 1998;49(324):1213-7. https://doi.org/10.1093/jxb/49.324.1213
  49. Sharma BR, Gautam LN, Adhikari D, Karki R. A comprehensive review on chemical profiling of Nelumbo nucifera: Potential for drug development. Phytotherapy Research. 2017;31(1):3-26. https://doi.org/10.1002/ptr.5732
  50. Shen-Miller J, Mudgett MB, Schopf JW, Clarke S, Berger R. Exceptional seed longevity and robust growth: Ancient sacred lotus from China. American Journal of Botany. 1995;82(11):1367-80. https://doi.org/10.1002/j.1537-2197.1995.tb12673.x
  51. Shi T, Wang K, Yang P. The evolution of plant microRNAs: Insights from a basal eudicot sacred lotus. The Plant Journal. 2017;89(3):442-57. https://doi.org/10.1111/tpj.13394
  52. Sun L, Zhao T, Qin D, Dong J, Zhang D, Ren X. Comparative miRNAome combined with transcriptome and degradome analysis reveals a novel miRNA-mRNA regulatory network associated with starch metabolism affecting pre-harvest sprouting resistance in wheat. BMC Plant Biology. 2025;25:104. https://doi.org/10.1186/s12870-024-06039-8
  53. Stotler RE, Crandall-Stotler B. A Synopsis of the liverwort flora of North America North of Mexico1, 2. Annals of the Missouri Botanical Garden. 2017;102(4):574-709. https://doi.org/10.3417/2016027
  54. Takhtadzhian AL. Diversity and classification of flowering plants. Columbia University Press; 1997.
  55. Thorne RF. An updated phylogenetic classification of the flowering plants. Aliso: A Journal of Systematic and Floristic Botany. 1992;13(2):365-89. https://doi.org/10.5642/aliso.19921302.08
  56. Tokhun N, Ounsaneha W, Punaaterkoon K, Wongsudi P, Puttapornthip R, Boonthai Iwai C. Nutritional and cost-benefit analysis of some traditional Thai foods and beverages prepared from sacred lotus. International Journal of Environmental and Rural Development. 2024;15(1):139-44.
  57. Trang NTQ, Hieuthao TT, Hong HTK. Study on the anatomical morphology of lotus varieties (Nelumbo nucifera Gaertn.) in Vietnam. Plant Cell Biotechnology and Molecular Biology, 2019;20(3,4):95-105.
  58. Van Bergen PF, Hatcher PG, Boon JJ, Collinson ME, de Leeuw JW. Macromolecular composition of the propagule wall of Nelumbo nucifera. Phytochemistry. 1997;45(3):601-10. https://doi.org/10.1016/S0031-9422(96)00880-1
  59. Vinceti B, Termote C, Ickowitz A, Powell B, Kehlenbeck K, Hunter D. The contribution of forests and trees to sustainable diets. Sustainability. 2013;5(11):4797-824. https://doi.org/10.3390/su5114797
  60. Wagner AM, Krab K, Wagner MJ, Moore AL. Regulation of thermogenesis in flowering Araceae: the role of the alternative oxidase. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2008;1777(7-8):993-1000. https://doi.org/10.1016/j.bbabio.2008.04.001
  61. Wang K, Deng J, Damaris RN, Yang M, Xu L, Yang P. Lotus-DB: An integrative and interactive database for Nelumbo nucifera study. Database. 2015;bav023. https://doi.org/10.1093/database/bav023
  62. Zhao M, Yang JX, Mao TY, Zhu HH, Xiang L, Zhang J, et al. Detection of highly differentiated genomic regions between lotus (Nelumbo nucifera Gaertn.) with contrasting plant architecture and their functional relevance to plant architecture. Frontiers in Plant Science. 2018;9:1219. https://doi.org/10.3389/fpls.2018.01219
  63. Zhu Y, Lu J, Wang J, Chen F, Leng F, Li H. Regulation of thermogenesis in plants: The interaction of alternative oxidase and plant uncoupling mitochondrial protein. Journal of Integrative Plant Biology. 2011;53(1):7-13. https://doi.org/10.1111/j.1744-7909.2010.01004.x
  64. Wang R, Zhang Z. Floral thermogenesis: An adaptive strategy of pollination biology in Magnoliaceae. Communicative & Integrative Biology. 2015;8(1):e992746. https://doi.org/10.4161/19420889.2014.992746
  65. Wang Y, Fan G, Liu Y, Sun F, Shi C, Liu X, et al. The sacred lotus genome provides insights into the evolution of flowering plants. The Plant Journal. 2013;76(4):557-67. https://doi.org/10.1111/tpj.12313
  66. Zhang Y, Nyong'A TM, Shi T, Yang P. The complexity of alternative splicing and landscape of tissue-specific expression in lotus (Nelumbo nucifera) unveiled by Illumina-and single-molecule real-time-based RNA-sequencing. DNA research. 2019;26(4):301-11. https://doi.org/10.1093/dnares/dsz010
  67. Wu Z, Gui S, Quan Z, Pan L, Wang S, Ke W, et al. A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq and PacBio RS II sequencing platforms: Insight into the plastid evolution of basal eudicots. BMC Plant Biology. 2014;14:1-4. https://doi.org/10.1186/s12870-014-0289-0
  68. Watling JR, Robinson SA, Seymour RS. 2006. Contribution of the alternative pathway to respiration during thermogenesis in flowers of the sacred lotus. Plant Physiology, 140(4), pp.1367-1373. https://doi.org/10.1104/pp.105.075523
  69. Zhang D, Chen Q, Liu Q, Liu F, Cui L, Shao W, et al. Histological and cytological characterization of anther and appendage development in Asian lotus (Nelumbo nucifera Gaertn.). International Journal of Molecular Sciences. 2019;20(5):1015. https://doi.org/10.3390/ijms20051015
  70. Yoo MJ, Soltis PS, Soltis DE. Expression of floral MADS-box genes in two divergent water lilies: Nymphaeales and Nelumbo. International Journal of Plant Sciences. 2010;171(2):121-46. https://doi.org/10.1086/648986
  71. Xue J, Zhuo L, Zhou S. Genetic diversity and geographic pattern of wild lotus (Nelumbo nucifera) in Heilongjiang Province. Chinese Science Bulletin. 2006;51:421-32. https://doi.org/10.1007/s11434-006-0421-0
  72. Xuelian L, Yu Q, Dingding C, Jiao D, Songbiao C, Pingfang Y, et al. Identification and characterization of two APETALA2 homolog genes in lotus (Nelumbo nucifera) involved in sepal and petal development. BMC Plant Biology. 2024;24(1):1186. https://doi.org/10.1186/s12870-024-05923-7
  73. Yang M, Han Y, Xu L, Zhao J, Liu Y. Comparative analysis of genetic diversity of lotus (Nelumbo) using SSR and SRAP markers. Scientia Horticulturae. 2012;142:185-95. https://doi.org/10.1016/j.scienta.2012.05.021
  74. Yang M, Xu L, Liu Y, Yang P. RNA-Seq uncovers SNPs and alternative splicing events in Asian lotus (Nelumbo nucifera). PLoS One. 2015;10(4):e0125702. https://doi.org/10.1371/journal.pone.0125702
  75. Yang M, Zhu L, Li L, Li J, Xu L, Feng J, et al. Digital gene expression analysis provides insight into the transcript profile of the genes involved in aporphine alkaloid biosynthesis in lotus (Nelumbo nucifera). Frontiers in Plant Science. 2017;8:80. https://doi.org/10.3389/fpls.2017.00080
  76. Yang M, Zhu L, Pan C, Xu L, Liu Y, Ke W, et al. Transcriptomic analysis of the regulation of rhizome formation in temperate and tropical lotus (Nelumbo nucifera). Scientific reports. 2015;5(1):13059. https://doi.org/10.1038/srep13059
  77. Singh J, Chauhan H, Kumari V, Singh R. Aquatic vegetables for nutrition and entrepreneurship. In vegetables for nutrition and entrepreneurship 2023;389-408. Singapore: Springer Nature Singapore.
  78. Yang M, Zhu L, Xu L, Pan C, Liu Y. Comparative transcriptomic analysis of the regulation of flowering in temperate and tropical lotus (Nelumbo nucifera) by RNA-Seq. Annals of Applied Biology. 2014;165(1):73-95. https://doi.org/10.1111/aab.12119
  79. Yang X, Wang Z, Feng T, Li J, Huang L, Yang B, et al. Evolutionarily conserved function of the sacred lotus (Nelumbo nucifera Gaertn.) CER2-LIKE family in very-long-chain fatty acid elongation. Planta. 2018;248:715-27. https://doi.org/10.1007/s00425-018-2934-6

Downloads

Download data is not yet available.