Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Multivariate analysis of genetic variability and divergence in upland cotton (Gossypium hirsutum L.) for yield and fiber quality traits

DOI
https://doi.org/10.14719/pst.7734
Submitted
14 February 2025
Published
14-10-2025
Versions

Abstract

Cotton (Gossypium hirsutum L.) is a versatile crop with multiple applications. The evaluation of 30 upland cotton genotypes was conducted to measure variability and divergence in seed cotton yield, yield-related attributes and fiber quality traits using multivariate analyses. The investigation, conducted during the Kharif season of 2022, was laid out in a randomized block design (RBD) with three replications at the Main Cotton Research Station (MCRS), Navsari Agricultural University (NAU), Surat. Analysis of variance (ANOVA) showed significant genetic variability between the genotypes for all traits. Morphological observations identified GISV-400 as the genotype with the highest seed cotton yield (148.00 g/plant). Fiber quality analysis highlighted GISV-391 as superior in upper half mean length (28.03 mm), fiber strength (28.37 g/tex) and fiber fineness (4.80 µg/inch). Seed cotton yield per plant displayed a significant positive relationship with the number of bolls per plant and boll weight. Principal component analysis (PCA) identified five components with eigenvalues greater than one, collectively explaining 78.66 % of the total variation. The biplot revealed GISV-399, GISV-398, GISV-391, GISV-322, GISV-323, GISV-313 and GISV-402 as the most genetically diverse genotypes. Hierarchical clustering further classified the 30 genotypes into five distinct groups. To identify the best-performing genotypes, the Multi-Trait Genotype-Ideotype Distance Index (MGIDI) was employed for the ranking of genotypes at 10 % selection intensity, four genotypes (GISV-389, GISV-395, GISV-394 and GISV-391) were identified as superior. Overall, seven genotypes (GISV-389, GISV-395, GISV-394, GISV-391, GISV-398, GISV-399 and GISV-400) were consistently identified as high-performing in terms of both yield and fiber quality based on PCA, hierarchical clustering and MGIDI. Overall, the study indicated that the existing variability in tetraploid cotton can be effectively utilized through hybridization and development of mapping populations.  

References

  1. 1. Patel J, Lubbers E, Kothari N, Koebernick J, Chee P. Genetic and genomic analysis of cottonseed oil. Oil Crop Genomics. 2021;9(4):53–74. https://doi.org/10.1007/978-3-030-70420-9_3
  2. 2. Salimath SS, Romsdahl TB, Konda AR, Zhang W, Cahoon EB, Dowd MK. Production of tocotrienols in seeds of cotton (Gossypium hirsutum L.) enhances oxidative stability and offers nutraceutical potential. Plant Biotechnol J. 2021;19:1268–82. https://doi.org/10.1111/pbi.13557
  3. 3. Patel CT. Hybrid-4: A new hope towards self-sufficiency in cotton in India. Cotton Dev. 1971;1(2):1–6.
  4. 4. Khan NU, Hassan G, Kumbar MB, Parveen A, Ahmed S. Gene action of seed traits and oil content in upland cotton (Gossypium hirsutum L.). SABRAO J Breed Genet. 2007;39(1):17–29. https://www.researchgate.net/publication/292759563
  5. 5. Latif A, Bilal M, Hussain SB, Ahmad F. Estimation of genetic divergence, association, direct and indirect effects of yield with other attributes in cotton (Gossypium hirsutum L.) using biplot correlation and path coefficient analysis. Trop Plant Res. 2015;2(2):120–6. https://www.tropicalplantresearch.com/archives/2015/vol2issue2/9.pdf
  6. 6. Ali MA, Khan IA. Assessment of genetic variation and inheritance mode in some metric traits of cotton (Gossypium hirsutum L.). J Agric Soc Sci. 2007;4(3):112–6. https://www.researchgate.net/publication/252597944
  7. 7. Liaqat S, Ahmed RI, Ahmad S, Bilal M, Karim A, Qayyum A, et al. Evaluation of diverse germplasm of cotton (Gossypium hirsutum L.) for yield and fibre attributes using a multivariate analysis approach. J Agric Sci Rev. 2015;4(5):146–50.
  8. 8. Ahmad RI, Liaqat S, Noor E, Qayyum A, Irshad A, Hussain A, et al. A multivariate analysis approach for evaluating diverse germplasm of cotton (Gossypium hirsutum L.) for seed and fibre characteristics. Basic Res J Agric Sci Rev. 2015;4(6):164–71.
  9. 9. Olivoto T, Lúcio AD. metan: An R package for multi-environment trial analysis. Methods Ecol Evol. 2020;11:783–9. http://doi.org/10.1111/2041-210X.13384
  10. 10. Olivoto T, Nardino M. MGIDI: Toward an effective multivariate selection in biological experiments. Bioinformatics. 2021;37(10):1383–9. https://doi.org/10.1093/bioinformatics/btaa981
  11. 11. Dhivya R, Amalabalu P, Pushpa R, Kavithamani D. Variability, heritability and genetic advance in upland cotton (Gossypium hirsutum L.). Afr J Plant Sci. 2014;8(1):1–5. https://doi.org/10.5897/AJPS2013.1099
  12. 12. Dahiphale KD, Deshmukh JD, Jadhav AB, Bagade AB. Genetic variability, correlation and path coefficient analysis for yield and its attributing traits in cotton (Gossypium hirsutum L.). Int J Trop Agric. 2015;33(1):15–22. https://www.cabidigitallibrary.org/doi/full/10.5555/20153325880
  13. 13. Chaudhari MN, Faldu GO, Ramani HR. Genetic variability, correlation and path coefficient analysis in cotton (Gossypium hirsutum L.). Adv Biomed Res. 2017;8(6):226–33.
  14. 14. Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, Etminan A, Moghaddam M. Insight into the genetic variability analysis and relationships among some Aegilops and Triticum species, as genome progenitors of bread wheat, using SCoT markers. Plant Biosyst. 2018;152:694–703. https://doi.org/10.1080/11263504.2017.1320311
  15. 15. Gnanasekaran M, Thiyagu K, Gunasekaran M. Studies on genetic variability, correlation and path analysis in upland cotton. Electron J Plant Breed. 2020;11(3):981–6. https://www.ejplantbreeding.org/index.php/EJPB/article/view/3396
  16. 16. Nawaz B, Sattar S, Malik TA. Genetic analysis of yield components and fibre quality parameters in upland cotton. Int J Adv Multidiscip Res Stud. 2019;9:13–9.
  17. 17. Amanu AW. Phenotypic and genotypic correlation coefficients and path coefficient analysis studies of upland cotton (Gossypium hirsutum L.). Int J Plant Breed. 2020;7(1):667–76.
  18. 18. Chapepa B, Mubvekeri W, Mare M, Kutywayo D. Correlation and path coefficient analysis of polygenic traits of upland cotton genotypes grown in Zimbabwe. Cogent Food Agric. 2020;6(1):1–11. https://doi.org/10.1080/23311932.2020.1823594
  19. 19. Rehman A, Mustafa N, Du X, Azhar MT. Heritability and correlation analysis of morphological and yield traits in genetically modified cotton. J Cotton Res. 2020;3(1):1–9. https://link.springer.com/article/10.1186/s42397-020-00067-z
  20. 20. Pooja OS, Pundir SR, Rathi M, Mandhania S. Association studies with direct and indirect effects among different morpho-bio traits in Gossypium arboreum. Electron J Plant Breed. 2021;12(1):86–90. https://ejplantbreeding.org/index.php/EJPB/article/view/3514
  21. 21. Hampannavar MR, Patil BR, Katageri IS, Kumar BA, Janagoudar BS. Genetic variability and correlation analysis for agronomic and fibre quality traits in intraspecific cotton (G. hirsutum × G. hirsutum) recombinant inbred lines (RILs). Int J Microbiol Appl Sci. 2020;9(1):493–503. https://doi.org/10.20546/ijcmas.2020.901.054
  22. 22. Nawaz B, Sattar S, Malik TA. Genetic analysis of yield components and fibre quality parameters in upland cotton. Int J Adv Multidiscip Res Stud. 2019;9:13–9.
  23. 23. Rai P, Sangwan O. Correlation studies in elite lines of upland cotton (Gossypium hirsutum L.). Electron J Plant Breed. 2020;11(1):298–300. https://www.ejplantbreeding.org/index.php/EJPB/article/view/3260
  24. 24. Reddy KB, Reddy VC, Ahmed ML, Naidu TCM, Srinivasarao V. Correlation and path coefficient analysis in upland cotton (Gossypium hirsutum L.). Int J Pure Appl Biosci. 2015;3(3):70–80.
  25. 25. Jyoti J, Valu MG, Odedara GN. Correlation, path coefficient and D2 analysis study of seed cotton yield and fibre quality traits in American cotton (Gossypium hirsutum L.). J Pharmacogn Phytochem. 2021;10(3):222–30.
  26. 26. Khan NU, Abro HK, Kumbhar MB, Hassan GM, Khan. Exploitation of heterosis can combat Cotton Leaf Curl Virus (CLCV) incidence in cotton (G. hirsutum L.). Pak Cottons. 1999;43(3&4):21–33.
  27. 27. Khan NU. Genetic analysis, combining ability and heterotic studies for yield, its components, fibre and oil quality traits in upland cotton (G. hirsutum L.) [PhD thesis]. Sindh Agric Univ Tandojam, Pakistan; 2003.
  28. 28. Saeed F, Farooq J, Mahmood A, Riaz M, Hussain T, Majeed A. Assessment of genetic diversity for cotton leaf curl virus (CLCuD), fibre quality and some morphological traits using different statistical procedures in Gossypium hirsutum L. Aust J Crop Sci. 2014;8(3):442–7. https://www.cropj.com/faroq_8_3_2014_442_447.pdf
  29. 29. Kaleri AA, Rajput SY, Kaleri GA, Marri JA. Analysis of genetic diversity in genetically modified and non-modified cotton (Gossypium hirsutum L.) genotypes. J Agric Vet Sci. 2015;8(12):70–6.
  30. 30. Latif A, Bilal M, Hussain SB, Ahmad F. Estimation of genetic divergence, association, direct and indirect effects of yield with other attributes in cotton (Gossypium hirsutum L.) using biplot correlation and path coefficient analysis. Trop Plant Res. 2015;2(2):120–6. https://www.tropicalplantresearch.com/archives/2015/vol2issue2/9.pdf
  31. 31. Rupji M, Dwivedi B, Kowalski J. NOJAH: Not Just Another Heatmap for genome-wide cluster analysis. PLoS One. 2019;14(3):e0204542. https://doi.org/10.1371/journal.pone.0204542
  32. 32. Olivoto T, Diel MI, Schmidt D, Lúcio AD. MGIDI: A powerful tool to analyze plant multivariate data. Plant Methods. 2022;18:121. https://link.springer.com/article/10.1186/s13007-022-00952-5
  33. 33. Benakanahalli NK. A framework for identification of stable genotypes based on MTSI and MGDII indexes: An example in guar (Cyamopsis tetragonoloba L.). Agronomy. 2021;11(6):1221. https://doi.org/10.3390/agronomy11061221
  34. 34. Singamsetti A, Zaidi PH, Seetharam K, Vinayan MT, Olivoto T, Mahato A, et al. Genetic gains in tropical maize hybrids across moisture regimes with multi-trait-based index selection. Front Plant Sci. 2023;14:1147424. https://doi.org/10.3389/fpls.2023.1147424
  35. 35. Ahmed SR, Ali Z, Ijaz I. Multi-trait selection of quinoa ideotypes at different levels of cutting and spacing. Sustainability. 2023;15(14):11446. https://doi.org/10.3390/su151411446

Downloads

Download data is not yet available.